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Abstract

The discovery of two dimensional materials opened a unique pathway
to study the electronic properties of quantum materials which are oth-
erwise absent in bulk systems. Soon after the discovery of graphene
(2004), a plethora of 2D materials were found with various diverse
properties such as metals, insulators, semiconductors, superconduc-
tors, magnets etc. Besides having different properties than bulk sys-
tems, these materials can be assembled by using the Van der Waals
force, which greatly extends the possibilities of studying new phenom-
ena. For a long time, van der Waals heterostructures have been made
by vertically stacking one layer on top of another in which the lattice
mismatch occurs only due to the translation. However, twist angle
plays an interesting tuning knob to engineer the electronic properties
of the 2D heterostructures. Following long standing theoretical pre-
dictions, people have observed exotic quantum phenomena in twisted
bilayer graphene in 2018.

In this thesis, we have studied the electronic properties of magic an-
gle twisted bilayer graphene (MATBG), which consists of two graphene
layers rotated with respect to each other by an angle θ = 1.1◦. It
has been experimentally shown that MATBG possesses flat electronic
bands in the low energy scale. This flat band hosts multiple cor-
related phenomena such as correlated insulators, superconductivity,
magnetism etc.

We have studied different phases of MATBG in the presence of a
magnetic field to reveal the zero-field ground state of the system. In
the presence of a small magnetic field (B < 3 T), the Hall conductance
of MATBG shows quantized value with the Chern numbers C = ±1,
±2, ±3 and ±4 which nucleate from different integer fillings of the
moiré bands, ν = ±3, ±2, ±1 and 0, respectively. These phases can be
interpreted as spin and valley polarized many body Chern insulators.
The exact sequence and correspondence of the Chern numbers and
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filling factors suggest that these states are directly driven by electronic
interactions, which specifically break the time-reversal symmetry in
the system.

We have also studied the evolution of the phase space of MATBG
in high magnetic field and explored the Hofstadter spectrum. Due to
the large moiré unit cell area MATBG reaches one full flux quantum
(ϕ0) per moiré unit cell close to 30 T. We studied a detailed magne-
totransport behaviour of the system upto B = 31 T, corresponding to
(ϕ0). At (ϕ0), a series of re-entrant correlated insulators are observed
at the filling factors ν = +2, +3. Interaction driven Fermi surface
reconstruction is also observed at other fillings of the band which are
identified by the emergence of new set of Landau levels.

We further studied the higher energy dispersive bands in MATBG
in the presence of magnetic field. The analysis of the Landau level
crossings in the Rashba-like dispersive bands enables a parameter free
comparison to a newly derived magic series of level crossings in a mag-
netic field and provides constraints on the parameters of the Bistritzer-
MacDonald MATBG Hamiltonian. For the first time, this allows us to
experimentally verify the band structure of MATBG.

In the next section of this thesis, we have studied the effect of an
important parameter, Coulomb screening on the ground state of the
quantum phases such as correlated insulator and superconductor. The
coexistence of these two states prompts intriguing questions about their
relationships. We have directly tuned the electronic correlations by
changing the separation distance between the graphene and a metallic
screening layer. Correlated insulators are suppressed when the sepa-
rations are smaller than the typical Wannier orbital size (15 nm) and
also in devices with twist angles that slightly deviate from magic an-
gle (θ = 1.10◦ ± 0.05◦). Upon extinction of the insulating orders, the
vacated phase space is taken over by superconducting domes that fea-
ture critical temperatures comparable to those in devices with strong
insulators. Finally, we study the temperature dependence of the resis-
tivity in MATBG and unveil a strange metal phase upto a very low
temperature T = 40 mK.

We thus have experimentally demonstrated the effect of several
external parameters, such as magnetic field, screening, temperature
etc. on the ground state of MATBG and how they alter the microscopic
mechanisms of different correlated phenomena in the system.
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Resumen

El descubrimiento de materiales bidimensionales abrió un camino único
para estudiar las propiedades electrónicas de los materiales cuánticos
que son otros por lo demás ausente en los sistemas a granel. Poco
después del descubrimiento del grafeno (2004), se encontró una plétora
de materiales 2D con diversos propiedades tales como metales, ais-
lantes, semiconductores, superconductores, imanes etc. Además de
tener propiedades diferentes a los sistemas a granel, estos materiales se
pueden ensamblar utilizando el van der Waals fuerza, lo que ampĺıa
enormemente las posibilidades de estudiar nuevos fenómenos. Du-
rante mucho tiempo, las heteroestructuras de van der Waals se han
hecho apilando verticalmente una capa encima de otra en la que la
red el desajuste ocurre solo debido a la traducción. Sin embargo, el
ángulo de torsión juega un botón de ajuste interesante para diseñar
las propiedades electrónicas de las heteroestructuras 2D. Siguiendo
predicciones teóricas de larga data, la gente ha observado fenómenos
cuánticos exóticos en grafeno bicapa retorcido en 2018.

En esta tesis, hemos estudiado las propiedades electrónicas del
grafeno bicapa torcido de ángulo mágico (MATBG), que consiste en
dos capas de grafeno rotadas entre śı por un ángulo θ = 1.1◦. Se ha de-
mostrado experimentalmente que MATBG posee bandas electrónicas
planas en la escala de baja enerǵıa. Esta banda plana alberga múltiples
fenómenos correlacionados, como aislantes, correlacionados, supercon-
ductividad, magnetismo, etc.

Hemos estudiado diferentes fases de MATBG en presencia de un
campo magnético para revelar el estado fundamental de campo cero
del sistema. En presencia de un pequeño campo magnético (B < 3 T),
la conductancia de Hall de MATBG muestra un valor cuantificado con
los números de Chern C = ±1, ±2, ±3 y ±4 que se nuclean a partir
de diferentes rellenos enteros del muaré e bandas, ν = ±3, ±2, ±1 y
0, respectivamente. Estas fases pueden ser interpretado como esṕın y
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valle polarizado de muchos aisladores Chern de cuerpo. La secuencia
exacta y la correspondencia de los números de Chern y los factores de
llenado sugieren que estos estados están directamente impulsados por
interacciones electrónicas, que rompen espećıficamente la simetŕıa de
inversión de tiempo en el sistema.

También hemos estudiado la evolución del espacio de fase de MATBG
en alto campo magnético y exploró el espectro de Hofstadter. Debido
a el gran área de celda unitaria muaré MATBG alcanza un cuanto de
flujo completo (Φ0) por celda unitaria muaré cercana a 30 T. Estu-
diamos un detalle comportamiento de magnetotransporte del sistema
hasta B = 31 T, correspondiente a (Φ0). En (Φ0), se observa una se-
rie de aisladores correlacionados reentrantes en los factores de llenado
ν = +2, +3. Superficie de Fermi impulsada por la interacción también
se observa reconstrucción en otros rellenos de la banda que son identi-
ficado por la aparición de un nuevo conjunto de niveles de Landau.

Estudiamos más a fondo las bandas dispersivas de mayor enerǵıa en
MATBG en presencia de campo magnético. El análisis del nivel de Lan-
dau Los cruces en las bandas dispersivas similares a Rashba permiten
una comparación sin parámetros con una serie mágica recién derivada
de cruces a nivel en un campo magnético y proporciona restricciones en
los parámetros del Bistritzer-MacDonald MATBG Hamiltonian. Por
primera vez, esto nos permite verificar experimentalmente la estructura
de bandas de MATBG.

En la siguiente sección de esta tesis, hemos estudiado el efecto de un
parámetro importante, detección de Coulomb en el estado fundamental
de la fases cuánticas como aislante correlacionado y superconductor.
La coexistencia de estos dos estados genera preguntas intrigantes so-
bre sus relaciones. Hemos sintonizado directamente las correlaciones
electrónicas cambiando la distancia de separación entre el grafeno y
una capa de protección metálica. Los aisladores correlacionados se
suprimen cuando las separaciones son más pequeñas que el tamaño or-
bital t́ıpico de Wannier (15 nm) y también en dispositivos con ángulos
de giro que se desv́ıan ligeramente del ángulo mágico (θ = 1.1◦±0.05◦).
Tras la extinción de las órdenes de aislamiento, el espacio de fase va-
cante es ocupado por domos superconductores que presentan temperat-
uras cŕıticas comparables a las de los dispositivos con fuertes aislantes.
Finalmente, estudiamos la dependencia de la temperatura de la resis-
tividad en MATBG y revelamos una extraña fase metálica hasta una
temperatura muy baja T = 40 mK.
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Por lo tanto, hemos demostrado experimentalmente el efecto de
varios parámetros externos, como campo magnético, detección, tem-
peratura etc. sobre el estado fundamental de MATBG y cómo alteran
los mecanismos microscópicos de diferentes fenómenos correlacionados
en el sistema.
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Chapter 1

Introduction

The electronic properties of two dimensional materials have been in-
tensively studied in the field of experimental condensed matter physics
over the last few decades. Many of the quantum materials derive their
properties from reduced dimensionality, in particular from the con-
finement of electrons in two dimensional sheets. Research has been
conducted in order to understand the complex two dimensional quan-
tum materials in which electrons cannot be considered as independent
particles but interact strongly and give rise to collective excitations
known as quasiparticles. These understandings have been even em-
ployed to engineer new materials with completely different properties
to improve the modern electronics.

In this thesis we will study the electronic properties of magic angle
twisted bilayer graphene (MATBG), in which two layers of monolayer
graphene are rotated with respect to each other by an angle (θ). While
rotated by a specific angle (θ = 1.1◦), this system encompasses a set
of flat bands which host multiple strongly correlated phenomena.

In this introductory chapter, we will start with the description of
2D materials and their diverse properties starting from the discovery of
graphene. Later, we will describe the van der Waals heterostructures,
in which multiple two dimensional sheets can be assembled together
to engineer completely new properties in the system. Another new
and relatively unexplored direction is called the twistronics. In this
method, different 2D quantum materials can be twisted with respect
to each other to manipulate their band structure and electronic prop-
erties. We will discuss this in details in the next section of this chapter.
We will then briefly discuss the advantage of studying twisted bilayer
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graphene over other strongly correlated systems in condensed matter
physics. Finally, we will end this chapter with a short outline of this
thesis.

1.1 Two dimensional materials

During the first decades of 20th century, the existence of two dimen-
sional (2D) materials was a highly debatable issue in the physics com-
munity. According to classical physics, 2D materials are highly unsta-
ble in any finite temperature due to the thermal fluctuation of lattice
[1, 2]. This was in agreement with the observed decreasing melting
temperature with the decreasing thickness of the thin films. The devel-
opment of modern spectroscopy revealed the existence of 3D materials
with layered structure, such as graphite or molybdenum-disulphide.
Even though their exfoliation down to their two dimensional mono-
layers was thought to be possible only in the theoretical domain since
Mermin demonstrated that strictly one and two dimensional materials
can only exist hypothetically, i.e. if the crystal is described within the
harmonic approximation [3].

Materials science had a major scientific breakthrough in 2004, when
Andrei Geim and Konstantin Novoselov isolated a single layer of graphene
from the bulk graphite by using a very simple technique, called me-
chanical exfoliation with scotch tape [4]. This one atom layer thick
graphene showed exceptional electrical and mechanical properties [5,
6]. The discovery of graphene opened an avenue of 2D research. The
importance of this achievement was sealed in 2010, when A. Geim and
K. Novoselov were awarded the Nobel prize.

Soon after the discovery of graphene, an enormous number of 2D
materials have been isolated from the bulk by the same method in the
past decade. Among these, the most notable examples are a large class
of transition metal dichalcogenides (TMDCs) [7]. The recent progress
in exfoliation techniques such as micromechanical cleavage, ion interca-
lation, and surfactant-assisted ultrasonication has set the foundations
for the manufacturing of essentially any given layered bulk material
in the monolayer limit. To date, the isolated 2D materials cover al-
most all different phases of condensed matter, such as, metal, semicon-
ductor, insulator, superconductor, topological insulator, ferromagnets
etc [8–10]. Theses materials can be tuned in multiple different ways
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by changing their chemical composition, crystallographic phases, car-
rier densities, local potential etc. The vastness of these materials and
the innumerable ways to tune their properties further, brings unprece-
dented richness to the field of 2D materials.

Surprisingly, the 2D crystals are not only continuous but also ex-
hibit high crystal quality. The latter is very important in case of
graphene in which electrons can travel thousands of interatomic dis-
tances without scattering [4, 11, 12]. With the benefit of hindsight,
the existence of such one-atom-thick crystals can be reconciled with
theory. Indeed, it can be argued that the obtained 2D crystallites are
quenched in a metastable state because they are extracted from 3D
materials, whereas their small size (<< 1 mm) and strong interatomic
bonds ensure that thermal fluctuations cannot lead to the generation
of dislocations or other crystal defects even at elevated temperature.
However, a counter argument can be drawn where the 2D crystals gets
stabilized by gentle crumpling in the third dimension. This 3D warp-
ing increases the elasticity and decreases the thermal vibration, making
the 2D crystal stable [13, 14].

In general, for most of the 2D materials, loss of dimensionality
gives rise to very different properties than the 3D bulk system. For
example, the parent compound graphite is metallic but graphene is
semi-metallic. In general, TMDCs have indirect band gap in their
bulk, but the isolated monolayers have direct band gap which make
them attractive for optical studies.

With the rise of tons of 2D materials and their vast properties,
people started assembling multiple 2D layers together to alter the elec-
tronic properties of the product which is completely different than the
parent materials. In the next section we will discuss this in detail.

1.2 Van der Waals heterostructures

All 2D materials can be easily separated from their bulk because they
are stacked together in the three dimensional system by a weak force
called van der Waals (vdW) force. Even before the discovery of graphene,
the layered structure of graphite materials were confirmed by multi-
ple studies and believed that it’s 2D counterpart can not be derived
in reality [15]. However, thanks to the weak vdW force, people have
managed to isolate them in nature. The vdW force originates from the
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quantum fluctuation of the electromagnetic fields and almost two to
three magnitude smaller than the typical chemical bonds. This weak
force endows the exfoliability of the layered materials - the ability to
be thinned down mechanically, exfoliation.

Different 2D materials can also be assembled together by vdW force
if they are brought sufficiently close to each other. This beautiful pro-
cess gives rise to the vertical assembly of different 2D materials, called
van der Waals heterostructure [16, 17]. There are other methods which
can successfully combine multiple 2D layers together such as evapora-
tion and molecular beam epitaxy (MBE) etc. However, the atomically
clean interface has only been achieved by van der Waals heterostruc-
ture so far. The major advantages of the vdW heterostructures over
other conventional heterostructures are,

1. Atomically sharp interfaces. By mechanical stacking one can con-
trol the number of layers of each 2D materials and there are not
any chemical treatment involved in the process. Therefore, atom-
ically sharp and clean interfaces can be easily achieved in vdW
heterostructures [18]. It is highly nontrivial that the contamina-
tion inevitably present on top of 2D crystals and trapped during
their assembly segregates into isolated pockets, leaving the buried
interfaces clean and atomically flat in vdW heterostructures.

2. Isolation from the environment. vdW heterostructures presents
an opportunity to isolate the 2D materials in focus from its en-
vironment by encapsulating with other 2D materials without al-
tering its properties. For example, people observed that the elec-
trical properties and mobility of graphene were enhanced signif-
icantly by encapsulating it with insulating hexagonal boron ni-
tride (hBN) layers. Firstly, this hBN layers protect the graphene
from any type of chemical doping that might arise during the
fabrication of the device. Secondly, it also screens any charge
puddle present in the substrate which also affect the properties
of graphene [19–21].

3. In other growth processes (MBE etc.), lattice structure of one
material greatly affects the other material growing on top and
alters its properties by inducing strain etc. A small lattice mis-
match between two layers changes the overall properties of the
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system. However, this problem is easily avoided in vdW het-
erostructures. Each layer of 2D materials is separately prepared
and then assembled together in vdW heterostructures and the
effect of one layer is completely absent in other layers.

4. Electrostatic tunability. As the dimensionality is reduced in 2D
vdW heterostructures, the charge carrier density also decreases
within the system than 3D and makes it possible to tune the
carrier density by applying electrostatic gate voltage. Although
gating is also possible in semiconductor heterostructures, the gate
tunability of vdW heterostructures is order of magnitudes higher.
Additionally, introduction of ionic liquid gates makes the possi-
bility of gate tuning even wider.

5. Finally, the ease of fabrication. The vdW heterostructures can
be made in any lab without the need of expensive MBE systems.

For these reasons, in recent years many condensed matter exper-
iments which once used to be studied semiconductors such as Si or
GaAs, are now being performed in different vdW heterostructures. In
particular, the eldest member of the 2D material family, graphene and
its derivatives, have so far been the most popular platform due to its
robustness and ultrahigh charge mobility that rivals GaAs quantum
wells.

A basic 2D vdW heterostructure is shown in Figure 1.1. This struc-
ture is suitable for studying the electronic properties of graphene. Gen-
erally, the substrate is silicon oxide on top of silicon (Si/SiO2). The
monolayer graphene is sandwiched between two hBN layers from both
top and bottom. These two hBN layers serve a very good encapsulat-
ing layers and protect from chemicals and charge puddles in SiO2. The
bottom gate can be made either with metal or with graphite to elec-
trostatically tune the carrier density of graphene. It has been recently
realised that the local gate shows better tunability and clean phases
than the global silicon oxide gate.

The thicknesses of the hBN flakes are typically in the range of 5
nm to 100 nm. This range of thickness is a compromise between sub-
strate screening which prefers thicker flakes and ease of fabrication
which prefers thinner flakes. It has been shown that the encapsulation
with hBN significantly reduces the charge puddles from the substrate
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Fig. 1.1: Schematics of a typical hBN/graphene/hBN vdW het-
erostructures in which the 2D layer i.e. graphene is sandwiched be-
tween two hBN layers and the carrier density is tuned by the bottom
metal gate.

(typically SiO2) and boosts the mobility of graphene by order of mag-
nitudes. This allows us to fabricate high quality devices that were only
achievable by suspended graphene in vacuum [22, 23], which is far less
versatile than the hBN encapsulated devices.

Besides the encapsulation, another interesting use of the vdW het-
erostructure is to combine a more conducting layer such as graphene
or NbSe2 with a less conducting material such as WSe2 to make elec-
trical contacts to WSe2. Due to the large band gap of TMDCs, direct
contact with metal creates a Schottky barrier and results into a very
high contact resistance. This problem is often alleviated by first con-
tacting the semiconductor with a graphene layer, and then contact to
the graphene using metals [24].

After many years of intensive research, graphene field should logi-
cally reach a more mature stage. However, the possibility of combining
graphene with other 2D crystals has expanded this field dramatically,
well beyond simple graphene or 2D MoS2. The interest in vdW het-
erostructures is growing as quickly as interest in graphene did couple of
decades ago. As the technology of making vdW heterostructures moves
from its humble beginnings, increasingly sophisticated devices and ma-
terials should become available to more and more research groups.
This is likely to cause a snowball effect because, with so many 2D
crystals, sequences and parameters to consider, the choice of possible
vdW structures is limited only by our imagination. Even with the 2D
components that have been shown to be stable, it will take time and
effort to explore the huge parameter space. The decades of research
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on semiconductor heterostructures and devices may serve as a guide
to judge the probable longevity of research on vdW materials, beyond
simple graphene.

When monolayer materials are vertically stacked, new properties
only emerge if a sufficiently strong interlayer coupling is formed, which
facilitates the hopping of electrons and redistribution of charge between
the layers. More specifically, when the interlayer coupling is sharply
reduced or severed, each layer becomes more independent, behaving
similar to its monolayer configuration. Conversely, when the interlayer
coupling is made strong, each layer’s independence is reduced, and
a superlattice forms that induces new properties. Stated simply, the
interlayer coupling can facilitate the emergence of a new long-range
periodicity, unique band structure, and dramatically new properties.
One of the important parameter that gives rise to new properties in
a heterostructure is the twist angle between two layers. The twist
angle has a strong dependence on the interlayer coupling and band
reconstructions. We will explore this parameter in the next section of
this chapter.

1.3 Twistronics - A new degree of free-

dom

As discussed in the last section, vdW heterostructures opened up a
new path in the materials science research. There exists an analogy
between the vdW heterostructures and Lego to highlight the versatility
of such heterostructures [16, 25]. However, a key ingredient is missing
in this analogy, the twisting degree of freedom in vdW heterostruc-
tures. The relative lattice orientation between the 2D materials in a
vdW heterostructure, or the twist angle θ, is arbitrary and can be pre-
cisely controlled during the fabrication of such heterostructures. This
scenario is very different than other semiconducting systems, such as,
GaAs, AlGaAs etc.

This unique twisting degree of freedom brings unprecedented rich-
ness into vdW heterostructures. Twisting two 2D materials can sig-
nificantly modify the band structure and electronic interactions at low
energies, especially when the twist angle is small but nonzero. This
emerging field of twistronics - a term coined to refer to the study
of effect of twist angle on electronic properties - has been the recent
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hot-spot of the entire condensed matter physics community since the
discovery of superconductivity in twisted bilayer graphene [26, 27].

The moiré pattern, a long range modulation of atomic density ap-
pears as a result of twisting two lattices with respect to each other.
This has been shown in Figure 1.2. The moiré pattern originates from
the spatial interference of two periodic lattices that are misaligned.
Since most 2D materials have a hexagonal lattice (graphene, hBN,
most TMDs, NbSe2, etc.) or a distorted form of the hexagonal lattice
(1-T’ phases of TMDs), we shall here focus on lattices with hexagonal
symmetry. In the next section, we will pick the simplest hexagonal
lattice, graphene and briefly discuss the twisted graphene system.

1.3.1 Graphene

The easiest way to understand the periodicity of the moiré pattern is
to look at the two periodic lattices in the frequency or reciprocal space.
This is a central concept in solid state physics. The reciprocal lattice
of a hexagonal lattice is a triangular lattice.

If a is the distance between nearest neighbors, the primitive lattice
vectors can be chosen to be,

a⃗1 =
a

2
(3,

√
3), a⃗2 =

a

2
(3,−

√
3) (1.1)

The reciprocal lattice vectors are given by, b1, b2 with,

b⃗1 =
2π

3a
(1,

√
3), b⃗2 =

2π

3a
(1,−

√
3) (1.2)

The moiré pattern is determined by the shortest wave vectors that
connects the reciprocal vectors of the different layers. While the de-
tailed math of the explanation of such phenomena can be found in the
literature, the moiré pattern can be understood as a real space coun-
terpart of the acoustic beating phenomenon, where the sum of two
sinusoidal sound waves with different frequencies f1, f2 can be decom-
posed as the product of a sinusoidal function of the mean frequency
(f1 + f2)/2 and an envelope sinusoidal function with the difference
frequency (f1 − f2)/2 (frequency of the beating is twice of this, thus
(f1 − f2)). Analogously, the envelope wavevector of the moiré pattern
is determined by the difference between the underlying wave vectors.

Let us consider the concrete example shown in Figure 1.2. In the
real space, the moiré pattern is somewhat complicated to understand.
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Fig. 1.2: Schematics of a moiré pattern generated by two hexagonal
lattices. (a) Moiré pattern generated from the twisting of two hexag-
onal lattices by an angle θ in real space. (b) The reciprocal lattice
points of the twisted moiré system in the first Brillouin zone.

However, in the reciprocal space the picture is much clearer, the two
sets of reciprocal lattice points are simply rotated by the same an-
gle θ with respect to the origin. From this picture, we can see that
the smallest wave vector difference between the two sets of reciprocal
lattice vectors is given by,

∆k = b1 − b1
′ (1.3)

KM = |∆k| = |b1| · 2 sin θ/2 (1.4)

Here KM is the moiré wave vector. This defines the moiré length
scale in the long range. From the relation between the real space and
reciprocal space, we can define the moiré wavelength in the real space,
which is given by,

λM =
2π

sin(π/3)KM

(1.5)

Here λM is the moiré wave length of the superlattice unit cell. It can
be simplified as,

λM =
a

2 sin(θ/2)
(1.6)

For very small twist angle θ ≤ 1, which is actually more interesting
case as we will see later, we can simply write the moiré wavelength as,
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λM ≈ a

θ
(1.7)

From the above equation, we can note couple of important points,
For two hexagonal lattices with the same lattice period a, the moiré

wave length is inversely proportional to the twist angle (θ). Therefore,
an arbitrarily large or small moiré structure can be achieved by chang-
ing the twist angle between two layers.

The number of encompassed unit cell in a moiré unit cell scales as
θ−2, which is of the order of 104 atoms for twist angles ∼ 1◦. This poses
a significant difficulty to the theoretical modelling of moiré systems at
small twist angles. As we will see in Chapter 2, the tight-binding model
is the most practical representation of the electronic band calculation
in condensed matter physics. However, continuum model and effective
model can also be constructed to capture the salient features of the
moiré superlattice single particle bands. The area of the moiré unit
cell is given by,

AM = λ2M cos(π/3) =

√
3

2
λ2M (1.8)

This area will be discussed and used in Chapter 2 in more detail
for the calculation of the band structure of twisted bilayer graphene.

In this section we have introduced the moiré system very briefly
and we will discuss the graphene moiré system specifically in details in
the next Chapter.

1.3.2 Advantages over other correlated systems

One of the main characteristics of the twisted bilayer graphene, while
rotated close to the magic angle is the formation of electronic flat band
and observation of correlated phenomena in the system. People have
observed many of these phenomena in other system as well. Correlated
insulators, superconductors, magnetism, quantum anomalous Hall ef-
fect (QHE) etc. have been observed in multiple quantum materials
before [28–30]. However, there are few advantages of studying these in
twisted bilayer graphene compared to other systems, such as:

1. The carrier density of cuprates (BSCCO, YBCO) are much higher
than graphene and it is not possible to tune the carrier density
of these systems by applying a gate voltage. To study the full
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phase space of these unconventional superconductors, one need
multiple devices with different doping at the time of their growth
[31]. On the other hand, twisted bilayer graphene is gate tunable
and the complete phase space can be explored in a single device,
just by applying the gate voltage to the system and changing its
carrier density.

2. Graphene is the hexagonal honeycomb lattice, made of carbon
atoms. This is very stable in the ambient condition compared to
many pnictides and cuprates [32]. It is easier to fabricate these
devices and measure them due to the better stability.

3. Due to the structural simplicity, twisted bilayer graphene is eas-
ier to study theoretically compared to cuprates and other heavy
fermion systems.

4. It is reasonable to expect that several other typical condensed
matter phases, from multiferroics to quantum spin liquids, might,
one day, be realized in these moiré materials. Moreover, several
new moiré systems have appeared, including double twisted bi-
layer graphene, twisted monolayer-bilayer graphene and twisted
transition metal dichalcogenides (TMDs), leading to the emer-
gence of the field of moiré quantum matter [33].

1.4 Outline of the thesis

In this introductory chapter, we have discussed a brief overview of 2D
materials and van der Waals heterostructure followed by the hexagonal
twisted moiré superlattice.

Chapter 2 discusses the theoretical basics of twisted bilayer graphene
system. It starts with the band structure of graphene and bilayer
graphene. Then it introduces a twist angle in the Hamiltonian and
calculates the band structure of twisted bilayer graphene. The band
structure is calculated by both tight binding model and continuum
model. Finally, it discusses a very specific scenario when the twist
angle is close to magic angle (θ = 1.1◦).

In Chapter 3, we describes all the experimental methods that have
been used in this thesis. The fabrication process of devices has been
discussed in great detail. Also, the measurement steps and the cryo-
genic systems have been presented in this chapter.
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Chapter 4 deals with the observation of Chern insulator in magic
angle twisted bilayer graphene devices (MATBG) [34]. We start with
the basic theoretical description of Chern insulators. Later in this chap-
ter we represent our experimental data, which clearly shows the Chern
insulators inside the flat band of MATBG pointing to the interaction
of the charge carriers.

Chapter 5 portraits the Hofstadter spectrum of MATBG upto a
very high magnetic field B = 31 T. The Hofstadter spectrum of the
flat band with topological aspects and with interaction has been de-
scribed for the first time here. This study clearly demonstrates the
re-entrant correlated insulator and Fermi surface reconstruction at dif-
ferent integer fillings of the flat band at one magnetic flux quantum
per moiré unit cell (Φ0) [35].

Although the flat bands in MATBG hosts a lot of correlated phe-
nomena at different carrier density, the high energy dispersive bands
are also quite interesting and important to this system. Chapter 6
deals with the electronic properties of higher energy bands in MATBG
which are Rashba-like. From the magnetotransport behavior, we have
calculated a parameter free corrugation factor which puts a constraints
on the Bistritzer-MacDonald Hamiltonian. From this, experimentally
for the first time, we have verified the band structure of higher energy
bands in MATBG [34]. We also discuss the high magnetic field Hofs-
tadter spectrum of these dispersive bands and compare the emergent
Landau levels with the theoretically predicted levels [35].

In Chapter 7, we discuss the effect of electrostatic screening on the
correlated phenomena in MATBG. We change the distance between
the metal screening layer and the twisted bilayer graphene by chang-
ing the thickness of the bottom hBN layer and study the temperature
dependence of the phase space of three MATBG devices with slightly
different twist angles to compare the existence of correlated insulators
and superconductors in these devices [36]. This also helps us to under-
stand the ongoing competition between different ground states of the
flat band in MATBG.

Chapter 8 deals with one of the very important phases in corre-
lated systems, which is strange metallicity. We study the temperature
dependence of the resistivity in great detail for multiple devices with
twist angle both near magic angle and far away from magic angle. This
study discusses the existence of a strange metal phase in the devices
close to magic angle inside the flat band [37]. This clearly shows a
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non-Fermi liquid behaviour of the system and helps us to understand
the microscopic mechanism of the electronic phases in MATBG.

Finally, in Chapter 9, we summarize the results discussed in differ-
ent chapters and also give a future outlooks of the projects that have
been carried out in this thesis.
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Chapter 2

Theoretical Background

In this chapter, we will review the basic physics in twistronics systems
and introduce the formulation necessary for understanding the band
structure of moiré superlattices, in particular twisted bilayer graphene.
Although chemically these superlattices are quite simple, often con-
sisting of only one type of atoms (i.e. carbon), to understand their
single-particle band structures is not a simple matter and requires
quite involved calculations. Here, we will discuss in detail the issue
of degeneracy and band counting in twisted moiré superlattices, which
often causes quite some confusion.

The theories discussed in this chapter are all single particle physics,
meaning that the Coulomb repulsion and exchange between the elec-
trons, whether short ranged or long ranged, is neglected. This single
particle physics have been quite well understood, at least in a semi-
quantitative level. On the other hand, the phenomena that are dis-
cussed in the later chapters, which results from the single-particle flat
bands in these twisted structures, are much less clearly understood,
and the precise origins of those phenomena are still under debate.

We will start with the band structure of graphene followed by the
band structure of Bernal stacked bilayer graphene. And then we will
see how a twist angle in bilayer graphene changes its band structure.
We will calculate the band structure of twisted bilayer graphene by
tight-binding model and as well as continuum model. In the next
section the specific case of the magic angle twisted bilayer graphene
will be discussed where an electronically flat band is formed giving rise
to the correlation in the system.
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2.1 Band structure of graphene

Let us begin with the single-particle band structure of monolayer graphene.
Graphene has a two dimensional honeycomb lattice of carbon atoms.
The unit cell of graphene has two equivalent carbon atoms at the A
and B sites, as shown in Figure 2.1(a). Each carbon atom in this lat-
tice assumes a sp2 hybridization. The three in-plane orbits bond with
adjacent atoms to form strong σ-bonds, while the electrons in the pz
orbit can hop in the entire plane through the π-bonds. The valence
electronic bands of graphene has primarily pz character, and we shall
only consider them in the following [15].

If we only consider the nearest hopping, i.e. from A site to the
adjacent B site and vice versa, the tight-binding Hamiltonian in the
second-quantized form can be written as,

H = t
∑
i,j=⟨i⟩

a†ibj + h.c. (2.1)

Here, ai, a
†
i , bi, b

†
i are the annihilation and creation operators on

the A and B sublattices respectively. t is the nearest hopping energy
(t ≈ −2.7 eV). The diagonalization of this tight-binding Hamiltonian
is achieved by transforming the operators to the k-space,

ai =
∑
k

eik·ri,Aak bi =
∑
k

eik·ri,Bbk (2.2)

The Hamiltonian can be written in the block-diagonal form as,

H =
∑
k

h(k) =
∑
k

f(k)a†kbk + h.c. (2.3)

where f(k) =
∑3

j=1 exp ik · δj sums over all three possible hopping
paths from B site to adjacent A sites. The eigenvalues of this block-
diagonal Hamiltonian are,

E±(k) = ±|f(k)| (2.4)

This energy dispersion is plotted in Figure 2.1(c). As can be seen
in the plot, the two bands touch at the K and K ′ corners of the first
Brillouin zone, which are called the Dirac point of graphene. If we
expand the Hamiltonian near one of the two corners (or valleys), we
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Fig. 2.1: Atomic structure of monolayer graphene. (a) Atomic struc-
ture of the honeycomb lattice in real space. A and B sublattices are
marked in corresponding colours. Two lattice vectors are also shown
here. (b) 1st BZ in the reciprocal space with corresponding reciprocal
vectors (b1, b2) and two nonequivalent corners K and K’. (c) Electronic
band structure of graphene. Zoomed in part shows the Dirac point.

obtain a massless Dirac Hamiltonian that describes a two-level system
with inversion symmetry. For example, near the K valley we have,

hK(q) = h(K + q) ≈ h̄vF

[
0 qx − iqy

qx + iqy 0

]
= h̄vFσ · q (2.5)

Here we have represented the states on the two sublattices A and B
in a two component spinor form, and vF = 3ta/2 is the effective Fermi
velocity in graphene.

Although we only considered the nearest-neighbor hopping, it can
be shown that the massless Dirac points are protected against gap
opening even if higher order hopping terms are considered. In fact, the
gapless nature at the Dirac points are protected by a combination of
C2 and T symmetry of the lattice, where C2 is the 2D spatial inver-
sion operator that takes (x, y) → (−x,−y) and T is the time reversal
operator.

A gapped Dirac point must have a mass term mσz in their Hamil-
tonian (appended to Equation 2.5). While T demands that m(K) =
m(K ′), inversion symmetry on the other hand demands that m(K) =
−m(K ′). Therefore, when both symmetries are present, m must be
zero for both valleys [38]. This symmetry argument naturally explains
why graphene is a semimetal with Dirac electrons, while other 2D
materials such as hBN and TMDCs are insulators or semiconductors.
Having different atoms on A and B sites automatically breaks the C2

inversion symmetry, and endows a mass term to the Dirac Hamiltonian.
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One could also break the time-reversal symmetry instead of breaking
the inversion symmetry to obtain gapped Dirac points, which is shown
in the celebrated Haldane model [39].

In this symmetry analysis, we are relying on the fact that both
C2 and T takes the momentum k to −k (not q), and thus K valley
to K ′ valley. In most cases, the inter-valley hopping in graphene is
negligible (conservation of valley charge). Thus, it is also useful to
discuss the protection of a single Dirac point at either K or K ′ valley,
using the reduced momentum q = k − K or q′ = k − K ′ . In this
context within the same valley, the symmetry operations C2 or T do
not make sense anymore, since they map between different valleys.
Instead, composite operation C2T is a valid operation that takes to
itself. Indeed, the Hamiltonian in Equation 2.5 is invariant under this
composite operation,

C2T hK(q)T −1C−1
2 = C2h̄vF

[
0 qx + iqy

qx − iqy 0

]
C−1

2 (2.6)

C2T hK(q)T −1C−1
2 = h̄vF

[
0 qx + iqy

qx − iqy 0

]
(2.7)

C2T hK(q)T −1C−1
2 = hK(q) (2.8)

where T conjugates the Hamiltonian (we do not consider spin here),
while C2 switches its two rows and columns. This composite operation
acts to forbid the gapping term mσz, because this term is not invariant
under the C2T operation,

C2T σzT −1C−1
2 = −σz (2.9)

The C2T symmetry within each valley requires both C2 and T to be
a symmetry of the Hamiltonian. However, when the C2T symmetry
is broken, it could be either C2 or T (or both) that is broken, but
which one it is, cannot be determined without extra information. In
other words, if one only knows that the Dirac point at one valley is
gapped by a mass term m, without knowing the mass term at the
other valley is −m, or m, it cannot be determined whether C2 or T
is the remaining symmetry. The C2T symmetry is thus crucial for
understanding the formation of gaps at the Dirac points, not only in
graphene but in general in hexagonal lattice systems, including twisted
bilayer graphene.
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2.2 Band structure of bilayer graphene

The case of bilayer graphene is interesting in its own right, since with
two graphene monolayers that are weakly coupled by interlayer car-
bon hopping, it is intermediate between graphene monolayers and bulk
graphite.

The tight-binding description can be adapted to study the bilayer
electronic structure assuming specific stacking of the two layers with
respect to each other (which controls the interlayer hopping terms).
Considering the so called AB stacking of the two layers (which is the
three-dimensional graphite stacking), the low energy, long-wavelength
electronic structure of bilayer graphene is described by the following
energy dispersion relation [40, 41],

E±(q) =
(
V 2 + h̄2v2F q

2 + t2⊥/2± (4V 2h̄2v2F q
2 + t2⊥h̄

2v2F q
2 + t4⊥/4)

1/2
)1/2

(2.10)
where t⊥ is the effective interlayer hopping energy and t, vF are the

intralayer hopping energy and graphene Fermi velocity for the mono-
layer case. We note that t⊥(≈ 0.4) eV < t(≈ 2.5) eV, and we have ne-
glected several additional interlayer hopping terms since they are much
smaller than t⊥. The quantity V with dimensions of energy appearing
in Equation 2.10 for bilayer dispersion corresponds to the possibility
of a real shift, e.g. by an applied external electric field perpendicular
to the layers, z direction in the electro-chemical potential between the
two layers, which would translate into an effective band-gap opening
near the Dirac point.

Expanding equation 2.10 to leading order in momentum and as-
suming V << t, we get,

E±(q) = ±
(
V − 2h̄2v2F q

2V/t2⊥ + h̄4v4F q
4/(2t2⊥V )

)
(2.11)

We conclude the following,

1. For V ̸= 0, bilayer graphene has a minimum band gap of ∆ =
2V − 4V 3/t2⊥ at q =

√
2V/h̄vF .

2. For V = 0, bilayer graphene is a gapless semiconductor with a
parabolic band dispersion relation.
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What about the chirality for bilayer graphene? Although the bi-
layer energy dispersion is non-Dirac-like and parabolic, the system is
still chiral due to the A/B sublattice symmetry giving rise to the con-
served pseudospin quantum index. The possible existence of an exter-
nal bias-induced band gap and the parabolic dispersion at long wave-
length distinguish bilayer graphene from monolayer graphene, with
both possessing chiral carrier dynamics.

2.3 Bilayer graphene : with a twist

Now we can proceed to understand the electronic structure of twisted
bilayer graphene (TBG). However, if we look closely at the atomic
structure, the first issue we run into is the commensuration. Strictly
speaking, a band theory can only be defined for systems with exact
translational symmetry, and then the Bloch theorem will guarantee
that all eigenstates of the system can be labeled by a momentum k.
However, when two lattices are stacked together with a relative twist,
there is in general no strict spatial periodicity in the resulting struc-
ture, except for some special cases. In the special cases when there is
such a periodicity, this composite structure is commensurate, other-
wise it is incommensurate. Examples of the two situations are shown
in Figure 2.2. The commensurate structures can only be satisfied at a
countable set of twist angles. An exact band theory can be constructed
only for these commensurate twist angles. However, approximate band
structures for incommensurate structures at small angles can still be
constructed using the continuum model.

Let us denote the unit cell vectors of the two layers of graphene by
a1, a2, and a

′
1, a

′
2 respectively. One of the common notation system to

describe a commensurate structure is to use a pair of positive integers
(n,m) such that the lattice vectors of the superlattice can be written
as [42–44],

A1 = na1 +ma2

A2 = −ma1 + (n+m)a2

Figure 2.2(a) shows the commensurate structure corresponding to
(m = 3, n = 2). The commensurate twist angle [45] corresponding to
structure (m,n) is given by,
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Fig. 2.2: (a) Commensurate and (b) incommensurate twisted bilayer
graphene structures. In (a), the large black parallelogram denotes the
unit cell of the superlattice

cosθ(m,n) =
n2 + 4nm+m2

2(n2 + nm+m2)
(2.12)

In particular, the structures that are denoted by (m,m− 1) (r = 1
structures) have special importance, since the unit cell of these struc-
tures contains exactly one moiré spot. These structures are the most
fundamental moiré structures, while the r > 1 structures are have
larger unit cells than the moiré spots and are of higher order. It has
been shown that at small angles, there is no fundamental difference
between the electronic band structures of r = 1 and r > 1 structures,
the latter is essentially the former folded into a smaller Brillouin zone.
However, structures with different r have distinct spatial symmetry,
[46] which have subtle effects on the topological properties of the bands
in twisted bilayer graphene and caused some debate from a mathemat-
ical perspective. From the experimental side, it has been shown that
realistic devices have non-negligible variation in local twist angles [47],
and therefore these subtle differences might not be observable in the
experiments.

To understand the experiment relevant physics in twist bilayer
graphene at small twist angles θ << 1 rad, it is therefore sufficient
to focus only on r = 1 structures. Furthermore, the tight-binding
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band structure of the r = 1 structures interpolates smoothly with the
calculation from the continuum model. It should be noted that r > 1
structures are valid representation of TBG as well [48].

However, it must be kept in mind that equivalence of r = 1 and
r >1 structures is only valid for small angles. TBG does not have strict
inversion symmetry, and structures with different r have different chi-
rality. It has been experimentally shown that this chirality can result
in circular dichroism at large twist angles [49].

In the next sections, we will summarize the major approaches of
theoretical models that describe the single particle band structure of
twisted bilayer graphene. We will start with the most detailed but least
intuitive models and later on describe the simpler and more approxi-
mate models. The main goal of these models is to obtain the eigenval-
ues Env(q) and eigenstates Ψnv(q) of the single particle Hamiltonian
H, which should satisfy the single particle Schrödinger equation,

HΨnv(q) = Env(q)Ψnv(q) (2.13)

where q is the reduced momentum in the mini Brillouin zone (MBZ).
Here, n and v are the band index (1, 2, 3, . . .) and valley index (±)
respectively. Due to time reversal symmetry, it is guaranteed that
En+(q) = En−(−q). In the models where only one valley is considered
we will simply use En and Ψn to denote the corresponding energies
and eigenstates.

2.3.1 Tight binding model of twisted bilayer graphene

In a commensurate TBG structure labeled by (n,m), the total number
of atoms in the moiré unit cell is equal to,

N = 4(n2 +m2 + nm) (2.14)

Therefore, for structures larger than (11, 10) (twist angles smaller
than ∼ 3◦), the number of atoms quickly reaches 103 to 104, exceeding
the capability of typical ab-initio methods, such as density functional
theory (DFT), which can typically only deal with less than a few hun-
dred of atoms per unit cell. Some approximations must be made to
make this problem tractable.
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The tight-binding model of twisted bilayer graphene builds upon
the same pz-orbital of the sp

2-hybridized carbon atoms that we used
to model monolayer graphene, but in addition considers the σ-bonds
between the layers, which is typically called the interlayer hybridiza-
tion.

The tight-binding Hamiltonian is written as,

HTBG =
∑
i,j

w(i, j)c†icj + h.c. (2.15)

Here, i, j label the atoms in the unit cell and w(i, j) is the generic
site-dependent hopping parameter. In the literature the following ap-
proximation is typically used to describe the hopping energies, which
is referred to as the Slater-Koster rule [44, 50],

w(i, j) = Vπ

[
1−

(
di,j · ẑ
di,j

)2
]
e−

di,j−a0
δ + Vσ

(
di,j · ẑ
di,j

)2

e−
di,j−d0

δ

(2.16)

where di,j = ri − rj is the displacement vector between atom i and
j, and dij is its magnitude. Here, Vπ and Vσ are π-bond and σ-bond
hopping parameters respectively. a0 and d0 are the interatomic spacing
and interlayer spacing respectively, and δ is a hopping decay parameter.
For two atoms directly on top of each other, di,j = (0, 0, d0) and w(i, j)
reduces to Vσ which represents a σ-bond. On the other hand, for
two atoms side-by-side separated by a0, w(i, j) = Vπ, representing a
π-bond. In general, the hopping direction is somewhere in between
these two limits. A slightly different set of parameters could also be
obtained from fitting the DFT calculations at small scales.

To solve the energy spectrum of the Hamiltonian Equation 2.15,
we again transform it to the k-space,

ci =
∑
k

eik·(ri+R)cIk (2.17)

where R is the origin of the unit cell containing the i-th atom, ri
is the displacement of i-th atom within the unit cell, and index I = 1,
. . .N is the index of i-th atom within the unit cell. We end up with
N operators in the form of cIk, each representing a plane wave with
wavevector k that only have amplitude on the I-th atom in the unit
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cell. With this transformation, the Hamiltonian is block-diagonalized
in k as,

HTBG =
∑
k

hTBG(k) =
∑
k

∑
I,J

hI,J(k)c
I,†
k cJk + h.c. (2.18)

where hIJ(k) is the hopping matrix that has the form of,

hIJ(k) =
∑
R

w(rI +R, rJ)e
ik · (rI +R− rJ) (2.19)

The summation runs over all possible paths of hopping from J-th
atom into I-th atom, which could be in a different unit cell than J ,
labeled by its origin R. This N × N matrix is numerically evaluated
and diagonalized to obtain the N eigenvalues and eigenvectors for each
momentum k. The eigenvectors have the form of (a1, ..., aN)

T , where
aI is the amplitude of the plane wave on I-th atom. The single-particle
band structure of TBG is now completely solved, having N mini-bands
in the MBZ. For angles θ ∼ 1◦, N ∼ 104 and it is still quite compu-
tational demanding to diagonalize such non-sparse matrix for many k
points in the MBZ, but is definitely tractable within the capability of
cluster servers.

Figure 2.3 shows the tight-binding band structure of TBG for a few
twist angles. We can compare them with the non-hybridized case and
one can immediately notice a few crucial differences:

1. At all twist angles, the Dirac cones remain at KS and K ′
S, i.e.

the interlayer hybridization does not gap out the Dirac points.

2. The intersections between the Dirac cones, which along MS and
ΓS gap out due to the interlayer hybridization.

3. The slope of the energy versus the momentum dE(q)/dq at the
Dirac points, also known as the Fermi velocity vF , is reduced (renor-
malized) due to the interlayer hybridization, compared to the bare
graphene Fermi velocity of vF ≈ 8.7× 105ms−1. This renormalization
is stronger as the twist angle θ is reduced. In fact, whether the Fermi
velocity is significantly reduced or not is the criteria for smallness of
twist angles in TBG, which is typically considered to be around θ ∼ 3◦.
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Fig. 2.3: Band structure of TBG calculated using the tight-binding
model for four commensurate angles that correspond to (3, 4), (8,
9), (12, 13), and (22, 23). Adapted from Ref. [42]. The red dashed
lines denote the slope of the original graphene Fermi velocity, vF ≈
8.7× 105ms−1

As we have discussed in Section 2.1, the protection of the Dirac
points in graphene requires both C2 rotational symmetry and the time
reversal symmetry T . While the latter is usually not broken without
any ferromagnetic ordering, C2 symmetry is not a perfect symmetry
of TBG. Depending on the twist center to be on a hexagonal site,
an atom site, or a general location, the TBG lattice belongs to either
D6, D3 or C1 (no rotational symmetry) group. The C2 symmetry
is absent in both of the latter two cases. Therefore, mathematically
speaking, the Dirac cones in TBG do not need to be gapless, except in
the commensurate structures with D6 symmetry.

However this is at odd with our observation, down to an energy
scale of ∼ µeV. It turns out that in TBG with such a big unit cell,
the approximate symmetries also play an important role in protect-
ing certain aspects of the band structure. Although C2 is in general
microscopically broken, it is broken so weakly that for the analysis of
low-energy band structure in the MBZ the C2 and thus D6 symme-
try is still approximately present, for small twist angles θ << 1 rad.
Therefore, the Dirac cones are approximately gapless. Another inter-
pretation of this effect is that the breaking of the strict C2 symmetry
occurs on a large length scale ∼ a/θ while a scattering process with
a length scale ∼ a is necessary to introduce coupling between the K
and K ′ Dirac cones to gap them out. Since the intervalley scattering
process decays exponentially with 1/θ, the Dirac cones are exponen-
tially better protected as θ → 0. Again, both arguments only works
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Fig. 2.4: (a) Band structure of θ = 1.8◦ TBG calculated with an ab
initio tight-binding model. Dashed lines denote the original graphene
Fermi velocity. (b-f) Fermi contours at five different energy cuts E =
5 meV, 24 meV, 25.85 meV, 40 meV and 80 meV. Among them, (d) E
= 25.85 meV corresponds to the van Hove singularity, which is labeled
in (a). The hexagons in (b-f) denote the MBZ of the superlattice

for small twist angles θ << 1 rad. For large twist angles close to 30◦, it
is in principle possible to obtain gapped Dirac points, for an infinitely
large and perfect structure [51].

In particular, it is of our interest to take a closer look at the band
structures of small twist angles. Figure shows the bands and Fermi
contours of θ = 1.79◦ TBG, corresponding to a (19, 18) commensurate
structure. From these calculations, we can identify the following key
features of the lowest mini-bands in TBG, which holds true above ∼ 1◦

unless specified. For clarity, we focus on the positive energy side, the
bands are roughly symmetric on the negative side.

1. Right above the Dirac energy (Figure 2.4(b)), there are approxi-
mately round Fermi pockets (electron-like, meaning they expand
as energy is increased) at KS and K ′

S points. There are in total
8 Fermi pockets in the MBZ from valley, spin, and layer/corner.
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2. As the energy rises (Figure 2.4(c)), the trigonal warping of the
Fermi pockets becomes pronounced. At each corner, the Fermi
pockets from K and K ′ pockets form a crossing David star with-
out hybridizing, due to the approximate valley conservation.

3. At a particular energy, the Fermi contours from KS and K ′
S

points meet along the ΓS −MS direction (Figure 2.4(d)). This
point is also known as the van Hove singularity (vHs), and is
labeled in Figure 2.4(a). It is a saddle point, as the energy rises,
the Fermi contour converge towards it in one direction and ex-
pands away from it in a perpendicular direction. The density of
states shows a logarithmic divergence at this energy.

4. Past the vHs, the energy contours merge into a different David
star, now centered at ΓS (Figure 2.4(e, f)). The Fermi contour is
now hole-like, its size shrinks as energy is increased. Note that
the degeneracy of the Fermi contour is now 4 - from valley and
spin. This is not surprising. The layer/corner counting is invalid,
because the Fermi contour is now centered on ΓS instead of KS

or K ′
S.

5. For most angles within 1◦ to 2◦, there is a band gap above the
lowest mini-bands of TBG [52] For larger twist angles, it is a
semimetalic band edge. The bands above this band edge are often
referred to as the remote bands. These remote bands usually
contain multiple Fermi pockets with different degeneracies and
sizes, which make their fermiology quite complicated.

In summary, the tight-binding model accurately describes the single-
particle band structure of a small-angle TBG. All these single-particle
band effects predicted by the tight-binding bands have been observed
in the experiment. The drawback of the tight-binding model is that
fewer insights can be obtained on how the electronic states couple and
hybridize within the moiré unit cell, and that it cannot deal with ar-
bitrary incommensurate twist angles. These issues are what motivate
the development of the continuum model, as will be discussed next.

2.3.2 Continuum model

The tight-binding model is built upon an atomic basis. In the con-
tinuum model, however, our starting point is the other extreme - we
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start with plane waves that propagate in each layer, and couple them
by the interlayer hybridization. As explained before, the plane waves
near theK-valley that can propagate in each layer must obey the Dirac
equation (at low-energies),

hK(q)ψK(q) = EK(q)ΨK(q) (2.20)

which gives rise to,

hK(q) = h̄vF (q)

(
0 e−iθq

eiθq 0

)
(2.21)

where θq =1/ tan(qy/qx) the argument of the q vector. For two
graphene layers that are at twist angles −θ/2 and θ/2 respectively, the
Hamiltonian in each of the layers rotates as,

h1K(q) = h̄vF (q)

(
0 e−i(θq+θ/2)

ei(θq+θ/2) 0

)
(2.22)

and

h2K(q) = h̄vF (q)

(
0 e−i(θq−θ/2)

ei(θq−θ/2) 0

)
(2.23)

where we have defined the rotated Pauli matrices σ±θ/2. Note that
these Hamiltonians act on a two-component spinor (αq, βq)

T which
represent the amplitudes of the plane waves that resides on sublattice
A and B, respectively, of a particular layer. We want to now introduce
the interlayer coupling which hybridizes different states from layer 1
and layer 2. However, before going into that let me use a simpler 1D
model to provide some more insight about the interlayer process and
its momentum transfer.

To capture the interlayer hybridizing physics, we first consider a
double-chain model as shown in Figure . We set the hopping within
each chain to be t, and the inter-chain hopping to be w or −w. We
consider two cases: the w’s are all the same, or have alternating signs.
In both cases, we define the unit cell to contain two atoms along the
direction of the ladder, having in total four atom sites per unit cell.
The unit cell has a length of 2 (we set a = 1), and the first BZ defined
as [−π/2, π/2]. We can write down the hopping matrix for each k as,

hdc(k) =


0 tcoska w 0

tcoska 0 0 ±w
w 0 0 tcoska
0 ±w tcoska 0

 (2.24)
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Fig. 2.5: A double-chain toy model. (a) Two chains with intra-chain
hopping t are coupled by alternating inter-chain hopping w and ±w.
(b)When the inter-chain hopping is homogeneous (+), states with the
same momentum are hybridized, and the originally degenerate bands
are offset by ±w. (c) When the inter-chain hopping is alternating (-),
states with momentum that differ by q = ±π are hybridized. This
results in new band gaps at momentum q = ±π/2.

This Hamiltonian can be diagonalized to obtain the eigenvalues
En(k), n =1, 2, 3, 4, shown in Figure for the +w and −w cases respec-
tively. When w = 0, there are two sets of degenerate bands, from the
two decoupled chains. We can see that, when w is turned on, the two
chains are hybridized in two completely different ways, depending on
the pattern of the inter-chain hopping parameter. The happens due to
the momentum transfer of the inter-chain hopping parameters.

2.4 Flat bands in twisted bilayer graphene

The only physical parameters in the continuum model are the graphene
bare Fermi velocity vF , the interlayer potential w, and the twist angle θ.
It can be shown that there is in fact only one dimensionless parameter
that controls the entirety of TBG physics, namely the ratio,

α =
w

h̄vF0 |K| θ
(2.25)

This is the ratio between the interlayer hopping amplitude w and
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the energy at which the Dirac cone from layer 1 intersects with the
cone from layer 2, h̄vF0 |KD| /2, up to a numerical factor. These are
the two most important energy scales in TBG.

For small α (corresponding to large twist angles), w << h̄vF |K| θ.
The Dirac cones from the two layers are far apart in the momen-
tum space such that their low-energy dispersion is minimally affected.
When α is increased (twist angle decreases), we observe a dramatic
reduction of the Fermi velocity vF , in both the tight-binding and con-
tinuum models. This effect, which is called renormalization of the
Fermi velocity, is a direct result of the interlayer hybridization. It has
been shown that to the lowest order, the dependence of α and vF is,

vF (α) = vF0
1− 3α2

1 + 6α2
(2.26)

where vF0 is the monolayer graphene Fermi velocity.
For small α, vF ≈ vF0(1−9α2) is a correction to the original Fermi

velocity. However, for non-small α there is a zero in vF (α), vF = 0
when α = 1/

√
3, or when,

θ =

√
3w

h̄vF0 |K|
≡ θ1M (2.27)

We have defined the first magic angle θ1M . Putting in the values
for graphene, vF0 = 8.7 × 105ms−1, |K| = 4π/3a, a = 0.246 nm, and
w ≈ 0.11 eV, we find the first magic angle to be,

θ1M ≈ 1.1◦ (2.28)

The electronic band structure at the first magic angle θ1M is ex-
tremely interesting. The Fermi velocity at the MBZ corners KS and
K

′
S goes to zero, which means that the states surrounding these points

have close to zero energy. How about the other parts of the lowest
mini-band, such as ΓS or MS? Apart from the zero Fermi velocity, the
entire band is flattened to be in a small energy window of a couple of
meV. In other words, the interlayer hybridization in TBG creates flat
bands near the charge neutrality point when θ ≈ θ1M .

To conclude this section, it should be mentioned that the appear-
ance of magic angles is a peculiar phenomena in twisted system with
Dirac fermions, which requires the approximate C2T symmetry to be
present. However, it is not a requirement for the appearance of flat
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bands. Besides TBG, moiré flat bands and associated phenomena have
so far been generalized to twisted bilayer-bilayer graphene (TBBG),
twisted WSe2, ABC trilayer graphene/hBN, TMD hetero-bilayers, and
so on. The physics of twistronics (band folding and interlayer hy-
bridization) applies similarly to these systems. Nevertheless, none of
these systems are theoretically expected or shown to possess a magic
angle in the same sense as in TBG - zero Fermi velocity and perfectly
flat bands in a certain limit. In the latter systems, the flatness of the
bands is a combined result of reduction of Brillouin zone, and defor-
mation of the bands due to interlayer hybridization.
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Chapter 3

Experimental Methods

The formation of the electronic flat band in twisted bilayer graphene,
when rotated by an angle θM = 1.1◦, has been discussed in the last
chapter. People have studied different moiré superlattice systems over
the past few years and significant effort has been expended on improv-
ing the sample quality and complexity. Over the course of my PhD,
we have also tried to improve the device quality by refining different
fabrication steps that we will elaborate here. In the first section, we
will describe the stacking process starting from the mechanical exfolia-
tion. Then we will explain different nanofabrication processes of these
devices.

While making the twisted bilayer graphene devices, a big number
of devices are discarded since they are not twisted by the magic angle.
In order to screen the best quality devices for further measurements,
we have also developed several experimental set-ups which include a
vacuum probe station, and a variable temperature insert (VTI) which
can reach a base temperature of 1.5 K in a few hours. We will also
describe these systems in detail.

We will also discuss a few specific topics about the instrumenta-
tion and measurement techniques relevant for the generic transport
measurement at low temperature.

We have explored the twisted bilayer graphene system at an un-
precedentedly high magnetic field in my PhD. Although the measure-
ment techniques were similar in this study, special attention was given
to remove any current loop susceptible to induce noise at high mag-
netic field (upto B = 36 T). In the last section of this chapter, we will
discuss the high magnetic field measurement set up.
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3.1 Fabrication Process

Nanofabrication of van der Waals heterostructures was introduced in
2013 in graphene-hBN heterostructures [53] and this fabrication pro-
cess is widely used now to make one dimensional electrical contacts.
The basic structure of an encapsulated twisted bilayer graphene de-
vice consists of hBN/bilayer graphene/hBN/graphite layers stacked
together. The nanofabrication of such devices involves four main steps.

Exfoliation

We exfoliate several 2D materials, such as graphene, hBN etc on Si/SiO2

substrates. After exfoliation, we examine these flakes with optical mi-
croscope and atomic force microscope (AFM) in order to choose the
appropriate candidate for the next process.

Stamps

Stamps are made of Polydimethylsiloxane (PDMS) and a thin layer of
polymer which helps us to stack multiple 2D layers. Making a clean
and stable stamp is the key to getting good stacks. We will describe
the stamp making process in detail in the next section.

Vertical assembly

In this step, we combine the exfoliated 2D flakes by using the stamps
and make the desired heterostructures.

Clean room processing

We use electron beam lithography (EBL), reactive ion etching (RIE),
and metal evaporators to make gates and electrical contacts to the
bilayer graphene heterostructures.

Each of these steps is crucial in order to fabricate the clean devices.
Although these steps are being used by all the experimental groups
working on 2D materials, the design of the stacking technique is unique
to each group and determines the device quality. So, in this chapter
we will discuss our device fabrication techniques in detail.
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3.1.1 Exfoliation

As mentioned in chapter 1, most of the two dimensional materials
available right now are mainly bonded by the van der Waals (vdW)
force in the bulk. The van der Waals force is much weaker than the
chemical bonds which bind the atoms in a molecule. Therefore, each
layer can be easily peeled off from the bulk using various physical or
chemical methods.

In 2004, Andre Geim and Konstantin Novoselov introduced an in-
credibly simple yet elegant method to mechanically exfoliate two di-
mensional layers from its bulk material by using a scotch tape [4]. This
method has yielded the highest quality flakes so far and is being used
in fundamental research of 2D materials for last eighteen years.

Here we will describe this method in detail and discuss the crucial
steps for the exfoliation of graphene and hBN flakes.

• Cleaning of the Substrate

First, we use a diamond cutter to cut the Si/SiO2 chips with
the dimension of 5 cm × 5 cm. Then we clean these chips with
O2 plasma for the exfoliation of graphene and hBN with the
following recipe.

O2 plasma : Power - 100 Watt, Flow rate - 50 SCCM, time - 3
mins. However, for the exfoliation of graphite, which will be used
as the gate, we do not plasma clean the chips before exfoliation.
We will explain the reason later.

• Peeling the bulk material

In this process, we start by sticking a small amount of bulk crystal
to a piece of scotch tape. After that we fold the tape 5-6 times
to thin the material. In this step we try to ensure an uniform
layer of material on the tape. However, we restrict the number
of folding to 5/6 to make sure that the crystal does not become
too small during this process.

• Attaching the tape on the substrate

Next, we bring the tape very close to the clean substrates which
have been placed on top of a glass slide. After attaching the
tape to the top of the substrate, we press them gently in order
to increase the adhesion between the flakes and the substrates.
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• Heating the substrates

Once we have pressed the tape gently on the substrates, we follow
two different steps for graphene and graphite or hBN. For both
graphene and graphite, we place the glass slides along with the
substrates and tape on a hot plate at 110◦ for 5-7 mins. For hBN
exfoliation, we do not heat the substrates.

• Peeling the tape from substrates

Finally, we peel off the tape very slowly from the substrates leav-
ing some freshly cleaved material on the substrates.

This procedure creates various flakes with different sizes and thick-
ness on the substrate. Proper combination of the number of folds, pres-
sure and heating results in the exfoliation of clean, monolayer graphene.
The size of the monolayer graphene varies widely depending on the pa-
rameters described here. However, we generally choose the layers with
a size of ∼ 50× 50 µm for a clean stacking process.

Choice of flakes

It is important to start with a set of good flakes to have a successful
stack in the end. In the very first step, we use an optical microscope to
identify the size, thickness and quality of the flakes. This becomes pos-
sible because of the optical property of the 2D materials. Absorption
of incident light by any two dimensional metal or semimetal depends
on the thickness of that material while deposited on a substrate. For
semiconductors and insulators incident light is refracted differently de-
pending on the thickness. Monolayer graphene absorbs 2.3% of the
incident light and the absorption increases linearly with the increasing
number of layers. People have shown in the past, both using theoreti-
cal models and from experimental data, that monolayer graphene has
the highest visibility on 290 nm SiO2 layer on Si substrate (Si/SiO2)
[54–56]. However, hBN layers have better visibility on 90 nm SiO2

substrate [57]. In all of our experiments we have exfoliated graphene
and graphite on 290 nm Si/SiO2 substrate and hBN on 90 nm Si/SiO2

substrate. Although optical contrast is typically enough to distinguish
between monolayer, bilayer or thicker graphite, we also used Raman
spectroscopy to verify the number of graphene layers. Once it is veri-
fied by Raman spectroscopy we set a particular colour contrast in the
microscope software to identify the monolayer graphene subsequently.
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Fig. 3.1: Optical image of graphene flakes. (a), (b), (c) correspond
to the type of flakes that we discard. (d), (e), (f) correspond to the
type of flakes that we typically choose for the stacking. All the images
are taken with 50X optical zoom. The scale bar in all the figures is 10
µm.

We also use atomic force microscopy (AFM) to characterize the
quality and thickness of hBN flakes [58]. The AFM is a scanning
probe microscope in which the topographical image of the sample sur-
face is measured based on the interactions between a silicon tip and
the sample surface. It is an ideal tool for creating 3D images on 2D
materials. The 3D measurements directly image wrinkles, folds, cracks
and any other surface defect of the 2D flakes.

Optical images

In this section, we will give some examples of flakes that we choose to
stack. As mentioned earlier, we use the optical microscope to search
for monolayer graphene once the colour contrast is set by the Raman
spectroscopy. In Figure 3.1 we have shown a few images of the graphene
flakes. We generally try to discard the flakes which are attached to
thicker graphite layer as shown in Figure 3.1 (a), or which have some
tape residues as shown in Figure 3.1 (b) or very big flakes (larger than
60 - 70 µm) as shown in Figure 3.1 (c). All these types of flakes create
some difficulty during stacking. It is very hard to pick up a flake which
is either bigger or attached to another thicker layer, as generally, they
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Fig. 3.2: Optical images of hBN flakes. (a), (b), (c) correspond to
the type of flakes that we discard. (d), (e), (f) correspond to the
type of flakes that we typically choose for the stacking. All the images
are taken with 50X optical zoom. The scale bar is 10 µm in all the
figures.

have a higher adhesion with the substrate. And any residue on the
flake creates bubbles while picking up more layers. Naturally, it is
undesirable to start with these types of flakes.

However, finding a good hBN flake is more difficult than finding
a good graphene flake. Since we neither plasma clean nor heat the
substrate for exfoliating hBN, it is harder to get clean, uniform flakes.
Generally we use 10 - 20 nm thick hBN flakes for normal twisted bilayer
graphene stacks. It is advantageous to use the hBN flakes which have
thickness in this range for multiple reasons. Firstly, any non-uniformity
or dirt on top of these flakes is very easy to detect by optical contrast.
Secondly, these flakes are more flexible than thicker (50 - 60 nm) flakes,
and thus there is lower probability of their cracking during the stacking
process. We avoid those flakes which have any small crack or dirt on
it. In the stacking process, it is preferable to use the top hBN which
has at least one almost straight edge. We will explain the reason later
in the vertical assembly section. In Figure 3.2 we have shown images
of few hBN flakes to describe the type of flakes we immediately discard
by optical microscope. The flake in Figure 3.2(a) is nonuniform and
contains three different regions with different thickness. These types of
flakes hinder the stacking process. Figure 3.2(b) shows a flake which
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Fig. 3.3: AFM image of a hBN flake. (a) shows an optical image
of a hBN flake on 290nm SiO2 substrate. (b) represents an AFM
image of the same flake with the colour scale and three regions marked
separately. (c) shows the thickness of these three different regions
marked in (a) and (b).

is uniform but contains residues on top which is clearly visible in the
optical image. We avoid these types of flakes as they introduce bubbles
during the stacking. Figure 3.2(c) is another example of an inhomo-
geneous flake that we discard. On the other hand, Figure 3.2(d), (e),
(f) represent a set of clean, homogeneous, isolated flakes that have
been used in our devices.

AFM images

Experimentally, it is challenging to obtain clean 2D flakes of hBN and
graphene. The scotch tape leaves adhesive residues on the exfoliated
flakes. This residue is sometimes invisible under the optical micro-
scope. Hence, to further characterize the flakes we perform AFM on
hBN and graphite flakes. In the beginning we measured the thickness
of a set of hBN flakes and fixed the colour contrast in the optical mi-
croscope for the specific thickness. This helps us to quickly detect the
type of flake we want in the next step. In Figure 3.3 we have shown
an optical image a hBN flake with different thicknesses in (a). Three
different regions are marked in corresponding colours. Figure 3.3(b)
represents the AFM image. In 3.3(c) we can clearly see the height of
three different regions. The yellowish region (region 2) has the maxi-
mum height (60 nm), green region (region 1) has a height of 12 - 15
nm and blueish green region (region 3) corresponds to 6 - 7 nm. As
the colour contrast becomes more blueish, the thickness reduces. From
this study we gain an overall understanding of the thickness of hBN
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flakes while searching.

In each batch of fabrication, we choose a set of flakes (around 6 - 7)
sitting on separate Si/SiO2 substrates. We always keep the exfoliated
flakes in a vacuum desiccator and use these within 2 - 3 days. We
have noticed that freshly exfoliated flakes are easier to pick up from
the substrate without cracks or bubbles.

In the mechanical exfoliation process, the substrate is generally full
of flakes and the desired flake is surrounded by other thick materials
and tape residues. Presence of any thick material or dirt or dust dis-
rupts the flow of the polymer that we use for stacking. Therefore it is
necessary to clean the environment of the desired flake before starting
to stack. We use an AFM tip attached on top of a glass slide/PDMS
for this purpose. This trick uses the micro-manipulating stage to put
the AFM tip in contact with the undesirable material or dirt on the
substrate and then drag it further away from the desired flake leaving
its environment clean.

3.1.2 Preparation of Stamps

After the exfoliation and selection of a set of good flakes, we make
a PDMS (Polydimethylsiloxane) stamp to make the heterojunction.
The stamp is a stack of transparent and sticky polymers that is used
to make a 2D heterojunction. In the beginning of 2D heterojunction
research people used only PDMS for the dry transfer technique [59,
60]. Later polypropylene carbonate (PPC) was widely used due to its
better adhesive properties. However, recently, people have found that
polycarbonate (PC) is a more suitable material for stacking multiple
layers at a higher temperature. PC has its glass transition temperature
at 120◦ C which makes it easier to operate at a higher temperature
without making it fluid.

PC film

1. PC is soluble in Chloroform. We mix 5% by weight PC with
chloroform and stir it overnight with a magnetic stirrer.

2. When the PC is completely dissolved in chloroform, we apply
10 drops of it on a very clean glass slide (cleaned with Acetone,
IPA).
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Fig. 3.4: PDMS/PC stamp for transferring.

3. We put another glass slide on top and quickly drag it along the
surface making a thin film on top.

4. We place the glass slide on a hot plate at 90 - 95◦ C for 5 mins
to completely dry the chloroform.

Stamps

The full stamp consists of several layers as illustrated in Figure 3.4.

1. First we take a clean glass slide and put a small piece of double
sided tape cut with a sharp knife.

2. We use commercially bought 0.5 mm thick PDMS sheets from
GelPack. We cut the PDMS in a small piece (1 mm × 1 mm)
keeping the plastic cover on both sides. We remove the thick
plastic cover and slowly place it on double-sided tape. While
placing the PDMS on glass slide/double-sided tape, make sure
there is no air bubble trapped in between. We then remove the
thin plastic cover from the upper side of PDMS.

3. We take a small piece of scotch tape and make a small hole in
the middle (2 - 3 mm diameter) either with a sharp knife or with
a punching machine.

4. We cut a piece of (1 cm × 1 cm) PC film that has been made on
the glass slide in the previous step with a very sharp knife. Make
sure there is no wrinkle in the cut part. The PC film is generally
a few µm thick.

5. The scotch tape with the hole is then placed on the PC film that
has been cut and slowly peeled off from the glass slide. This gives
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Fig. 3.5: Transfer stage. (a) Full transfer stage with all the different
parts marked. (b) Zoomed-in picture of the sample stage with rotating
plate screws marked.

us a free-standing PC film framed with a scotch tape as shown
in Figure 3.4. Again, make sure that there is no folding in the
free-standing film.

6. In the final step, the scotch tape with the PC film is placed on
top of the PDMS. Make sure there is no air bubble trapped in
between PDMS and PC film. In the end heat the full stamp at
90◦ for 5 mins.

The PDMS provides the necessary compressibility and the PC film
provides the stickiness in order to pick up multiple 2D layers without
folding, cracking or tearing.

3.1.3 Vertical Assembly

Vertical assembling of different 2D layers is done on a micro-manipulating
stage, called transfer stage.

Transfer stage

We have built the full transfer stage in our lab with the different parts
bought commercially. In Figure 3.5 we have shown the pictures of the
full transfer stage that we use. The major components in this set-up
are,
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1. This is a heavy vibration reduction stage that we use to reduce
any vibration that might come from the table during the stacking.

2. This is the sample stage which consists of several parts. Figure
3.5(b) shows a zoomed in picture of the sample stage. The parts
are as follows:

(2a) Coarse screw for the rotating stage. We use this to adjust
the rotating scale before starting to stack.

(2b) Fine screw for the rotating stage. We use this to rotate one
flake w.r.t. other while stacking. We have a precision of 0.016◦

in this rotating stage.

(2c) Sample plate with the heater and temperature sensor inside
it. In the middle of the plate we have a small vacuum hole which
is used to stick the substrate with the plate while picking up
flakes from it.

(2d) Shows the wiring for the heater and sensor.

(2e) Vacuum lines attached to the sample stage and stamp holder
(4a).

3. The X and Y manipulator of the sample stage is automated and
controlled by the joystick shown here.

4. This compound part is used to manipulate the stamp. It consists
of:

(4a) The stamp leg holds the stamp. It has two vacuum lines to
hold the glass slide of the stamp.

(4b), (4c) X and Y axis manipulator of the stamp.

(4d) Z axis manipulator for approaching, engaging and disengag-
ing the stamp.

(4f) Screws to tilt the stamp in X-Y and Z plane for a specific
direction of approach.

5. Focusing knob used to change the focal plane by adjusting the
height of the objective lens.

6. 4 different objective lenses.

7. Eye-piece.
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8. Camera connected to the computer.

9. A small fan for the fast cooling of the sample stage.

10. Three knobs to change the vacuum for sample plate, stamp leg
and stamp.

Next, we will describe the stacking process in detail.

Cut & stack process

This stacking process has been developed over the last 2 - 3 years in
which we cut the monolayer graphene before starting to pick up other
layers. Figure 3.6 illustrates the full stacking process step by step.

1. Before starting to pick up any layer, we first select the set of
flakes that will be used in the stacking i.e. top hBN, graphene,
bottom hBN and the bottom graphite. We make sure that the
top hBN has atleast one straight edge.

2. Once we select the flakes, graphene is cut with an AFM tip. The
size of each layer of cut graphene should match the size of top
hBN. This helps us in pinning the graphene with hBN layer.

3. We place the substrate containing top hBN on sample stage and
turn on the sample-stage vacuum. Then we attach the stamp
with the stamp-leg by turning on the vacuum knob.

4. Then we navigate to the selected top hBN flake by using the
joystick and make sure that the flake is in the centre of the focus
of the eyepiece of our camera setup. At the same time we bring
the PDMS/PC part in the centre and select a clean region in it.
We align the top hBN with the clean region.

5. Next step is to increase the sample stage temperature to 90◦.
We bring the PDMS/PC very close to the sample by using the
Z screw in the stamp manipulator. But the stamp should not
touch the substrate yet.

6. We increase the temperature to 100◦. Now, we slowly bring the
stamp down and make a contact with the substrate. The first
point of contact should be far from the selected flake.
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Fig. 3.6: Schematics of the stacking process. (a) Engaging the
PDMS/PC stamp with top hBN on substrate. (b) Top hBN picked
up on PC. (c) Selected graphene flake on substrate. (d) Cutting the
monolayer graphene with AFM tip. (e) Making contact with the 1st
graphene layer and picking up. (f) Rotating the 2nd layer of graphene
by 1.1◦ and picking up. (g) Picking up the bottom hBN. (h) Picking
up the graphite gate. (i) Depositing the final stack on substrate.

7. At this temperature PC has a very good stickiness. We increase
the temperature to 110◦. PC will start to flow as it is in fluid
state, but we make sure that it does not touch the flake. However,
the point of contact with the substrate should be close enough to
see the optical fringes (as observed in Figure 3.8) near the flake.

8. Slowly we make the contact with the flake by using the Z-screw.
In this step, we make sure that the fringes are moving smoothly
and there is no sudden jump in the contacting surface. We let
the fringes pass through the flake completely and wait for 2 - 3
mins.
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Fig. 3.7: Pre-cut graphene flakes. (a) A big graphene flake is cut
in two pieces with AFM tip. (b) Graphene is cut in two pieces with
undesirable crack and fold.

9. Now, we detach the PC from the substrate very slowly by moving
the Z-screw backward.

10. Once the stamp is completely detached, we turn off the sam-
ple vacuum and change the sample. After placing the pre-cut
graphene, we turn on the vacuum again.

11. We then align the graphene with the top hBN on PC and make
sure that the straight edge of hBN is aligned properly with the
graphene.

12. Next we bring down the stamp and make a contact with the
substrate and let the PC flow until the optical fringes are visible
near the flake.

13. At this stage, we make the fine alignment between the top hBN
and graphene and make sure that the 1st graphene layer is prop-
erly framed with the hBN. Now we slowly make contact and cover
the 1st layer completely. We do not let the PC touch the 2nd
layer of graphene as it might dope the flake. Both 1st and 2nd
layer of graphene used in the stacking process is cut from a single
monolayer flake which we will discuss later.
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14. We detach the PC from the substrate and rotate the sample stage
by 1.1◦ with the fine adjustment screw of the rotational stage.

15. We then align the 2nd layer of graphene with the top hBN/graphene
on PC.

16. Again we make contact slowly with the 2nd layer and then detach
the stamp from the PC. In all these steps we make sure that the
contact is always very smooth.

17. We change the sample and place the bottom hBN on the sample
stage.

18. Next we align the bottom hBN with the layers already on the
PC. Both the graphene layers should be completely covered with
the bottom hBN. We pick up this layer in the same way.

19. Next, we change the sample and place the graphite on top and
repeat the same process to pick it up.

Please note that, we maintain the temperature around 110-115◦

during the full stacking process to avoid any thermal relaxation
of the metal plates. Next we deposit the full stack on a pre-
patterned substrate which we will use to make electrical contacts
later.

20. We place the pre-patterned substrate on the stage and turn on
the vacuum. We increase the temperature to 140 - 145◦ and make
contact with the PC far away from the stack.

21. Finally, we increase the temperature to 175◦ and let the PC flow
on its own. Once the stack makes contact with the substrate, we
leave it for 3-5 mins. Now slowly we raise the stamp by using
the Z screw. First the PC will detach from the PDMS and as
we continue raising it, the PC will start to detach from the glass
slide as well. We use the X-Y screws to detach the PC film from
the glass slide completely. Finally, we raise the stamp completely,
leaving the PC and stack on the substrate.

22. To clean the PC on top of the stack, we place the substrate in
chloroform for 5 mins followed by IPA for 5 mins and blow dry.
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Fig. 3.8: Top hBN and graphene pick up. (a) A big graphene is cut
in two pieces matching the size of the top hBN. (b) Picking up the
top hBN. Colourful fringes show the evolution of the PC surface. (c)
Top hBN along with the two layers of graphene picked up. Both of
the graphene layers are attached with the edge of top hBN.

A few important points:

In Figure 3.7 we have shown two images of two graphene flakes. In
the first image, we started with a bigger flake and cut it into two
pieces matching with the width of the top hBN. The cuts are clean
and there is no wrinkle or fold in the flake. However in the 2nd image
we found some unexpected cracks and folding while cutting the flake.
We immediately discard these types of flakes. This flake has a lot of
strain, probably due to the inhomogeneous adhesion with the substrate
and might relax to a different twist angle while stacking.

We try to cut the graphene so that the 1st layer of graphene is
properly framed with the top hBN. This step helps us in reducing the
probability of the relaxation of the twist angle. Figure 3.8 shows this
scenario. After picking up, both the layers of graphene nicely touch
the edge of the hBN as shown in Figure 3.8(c).

We do AFM on the stack after cleaning the PC to choose a clean
bubble free region to make the device channel.

3.1.4 Clean room fabrication

In the next step of the fabrication process we need to make electri-
cal contacts with the graphene. This includes making electrodes and
gates for measuring the quantum transport properties of twisted bilayer
graphene as a function of carrier density. This involves several steps
of lithography, etching and metal deposition in the clean room. The
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Fig. 3.9: Schematics of the device structure. Twisted bilayer
graphene is sandwiched between two hBN layers shown in green colour.
The stack is etched in Hall bar geometry and connected with gold (in
yellow colour) showing the bias and gate voltage schematics. Zoomed-
in part shows the moiré structure.

typical structure of our devices is illustrated in Figure 3.9. The most
commonly used technique for contacting the encapsulated graphene
device is the edge contact which was introduced by Cory Dean’s group
in 2013 [53]. The metal contact is fabricated by depositing evaporated
metal along the etched 1D line in these encapsulated sandwiched de-
vices. The major advantage of the edge contact device over the 2D top
or bottom contact device is that the twisted graphene layers are fully
covered with insulating hBN layers and are protected from any chemi-
cals used during the fabrication process or charged puddles trapped in
the substrate. Typical contact resistance of these devices ranges from
100 Ωµm−1 to 1000 Ωµm−1.

There are mainly three choices for the bottom gate: (i) Highly
doped Si substrate with SiO2 on top as the dielectric material. (ii)
Metallic gate deposited by noble metal evaporation. (iii) 4 layers or
thicker graphite. In all of our devices we have used thick (7 - 8 nm)
graphite layers to electrostatically gate the devices. We have found that
graphite gates have some advantages over the metallic gates. Firstly, it
gives cleaner devices as this is a single step stacking process. Secondly,
we can ensure that the gating is uniform and not hindered by any dirt
on the gate.
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After selecting the cleanest region with AFM, we make the design
of the Hall bar in KLayout software to do the e-beam lithography. The
details of the clean room processes are as follows:

1. Spin coat the substrate with PMMA 950A2 e-beam resist at a
4000 RPM speed for 60 sec followed by a baking at 150◦C for 5
mins. This recipe gives a 270 nm thick PMMA layer.

2. Design the etch mask in the Hall bar geometry under e-beam
lithography and develop the resist with MIBK:IPA (1:3) for 40
sec followed by IPA for 1 min.

3. The sample is then inserted in a reactive ion etcher (RIE). The
typical etching recipe we use for etching away the hBN is a mix-
ture of CHF3 : O2 in 10:1 ratio. This recipe also etches graphite
with three times lower rate. In this step we etch the full stack all
the way down to SiO2. After the etching, the sample is cleaned
with acetone and IPA.

4. After the etching mask has been defined, we design the electrodes
in the KLayout software with the final images of the Hall bar
structure.

5. Again spin coat PMMA with the same recipe followed by the
baking at 150◦ for 5 mins.

6. Design the electrodes in EBL. In this step contacts for both Hall
bar electrodes and gate electrodes are made.

7. Develop the resist with MIBK/IPA as mentioned before.

8. After developing the electrodes, place the sample in RIE to etch
the top hBN using the same CHF3 / O2 recipe. This step is done
to make sure that fresh graphene edges are exposed.

9. After the etching, immediately transfer the sample to the evapo-
rator to avoid contamination of the freshly exposed graphene. We
generally keep the sample under pumping overnight to make sure
a pressure of ∼ 10−7 mbar is reached before deposition. We also
refill our chromium crucible to make sure there is fresh chromium
in the evaporator while making contact with graphene.

50



Fig. 3.10: Optical image of the device. (a) Optical image of a full
stack deposited on a pre-patterned substrate. (b) Optical image of the
Hall bar after etching rest of the stack in the 1st lithography process.
(c) Optical image of the full device with all the contacts made with
Cr/Au.

10. Next day, we evaporate chromium (Cr) and gold (Au) on the
sample while rotating it at a tilted angle. The rotation is neces-
sary to make sure that all the edges of the sample receive equal
metal evaporation. 5/6 nm Cr is evaporated with e-beam evap-
oration at a rate 1 Å/sec rate. Then 50 nm of Au is deposited
with thermal evaporation at a 1 Å/sec rate.

11. After evaporation the sample is placed in acetone. Keep it in
acetone for several hours and once there are visible wrinkles in the
metallic layer, spray some more acetone forcefully to properly lift
off the undesirable metal. Check under microscope while keeping
inside acetone and then finally blow dry.

At this point the device fabrication is finished. Figure 3.10 shows
the optical image of a full device starting from the stack.

We have to be careful while designing the Hall bar when using the
graphite local gate. The electrodes can never overlap with any part of
the graphite. Also, make sure that there is no part of graphene is con-
nected with the graphite at the point of metal deposition. Otherwise,
it will result into a direct shortage between device and the gate. There
is also a drawback of putting all the contacts outside of the graphite
edge. There will always be some part of the Hall bar (0.5 - 1 µm),
which can not be gated by the graphite. This region, not being gated
with the graphite, becomes highly resistive at lower temperature and
at high magnetic field making the four probe measurement difficult.
To avoid this problem we use the silicon layer to apply a global gate.
This helps to gate the graphene away from the CNP and reduce the
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contact resistance.
After finishing the fabrication, we prepare the sample for measure-

ment. In all of our measurement set up, we use the same 28-pin chip
carrier. So, we cut the sample to fit inside the chip carrier and paste
it with silver paste. And finally wire bond the device with the chip
carrier for the measurement.

3.2 Measurement set-up

In this section we will describe different measurement set-ups that
we have built during my PhD in order to better measure the electri-
cal transport properties of twisted bilayer graphene devices. We have
strategically developed different set-ups to systematically screen the
device and finally measure the magic angle device in dilution fridge.
This includes mainly three different measurement platforms,

1. Vacuum probe station : In this set up we measure the device at
room temperature and under vacuum condition.

2. 1.5K cryostat : This is a dry cryogenic system to perform basic
measurements with a base temperature of 1.5K.

3. Dilution fridge : All the final measurements are done in this
system.

3.2.1 Vacuum Probe Station

We use the vacuum probe station to check the electrical connection
of our devices at room temperature and at low pressure. After the
fabrication of the MATBG devices, we check the electrical contacts of
the electrodes in this station. We use a low pressure environment to
make sure that we do not dope any impurity in graphene while gating
the device at room temperature.

Figure 3.11 shows the images of our home-built vacuum probe sta-
tion. It mainly has four different parts:

1. This is the main vacuum compartment of the set-up. It is made
with several vacuum components which were commercially brought
and assembled together.
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Fig. 3.11: Images of the vacuum probe station. (a) Picture of the
complete vacuum station. (b) Zoomed-in picture of the sample holder.

2. This is the sample holder with a glass window. A zoomed-in
picture of this part is shown in Figure 3.11(b). We can load
the sample through the glass window which can be opened and
closed through a screw.

3. The vacuum line and the venting lines are connected through
this region. There is a one way valve which allows us to make
the vacuum inside the set-up or vent it in order to load or unload
the sample.

4. Electrical connection to the sample. The electrical cable is con-
nected through a Fischer connector with the sample wires. It
finally connects a breakout box with the sample through which
we perform the measurements.

We connect lock-in amplifier and voltage sourcemeter to measure
the device in this set up. We check the electrical connections of all
the electrodes by measuring their two-probe resistance. Additionally,
we also measure the four-probe resistance of the device to have an
idea of the twist angle of the device. Due to the hybridization of the
electronic bands in MATBG, four probe resistance is two orders of
magnitude higher than the non-twisted or low angle twisted device.
We only proceed with those devices which have a four-probe resistance
of Rxx ∼ 10− 40 kΩ.
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3.2.2 Dilution Fridge

Near the magic angle, the flat bands of the twisted bilayer graphene
systems have a very small energy scale (≤ 10 meV). Hence measuring
different phenomena in this system requires ultra-low temperature and
this is achieved by using a dilution refrigerator where 3He is pumped
from a mixture of 3He and 4He to reach milli-kelvin temperature. How-
ever, it is sometimes non trivial to perform the measurements at this
temperature. All the electrons have extremely low heat capacity at
milli-kelvin temperatures. Therefore, even small coupling with the
outside environment can increase the sample temperature. To avoid
such a scenario we need to install special filters inside the fridge.

Fridge set-up

In this section, we will briefly describe the basic principle of the dilution
refrigerator (DR). DR systems are the only refrigerator systems that
provide continuous cooling power at temperatures below 300 mK. They
can provide temperatures as low as 10 mK and operate without moving
parts at the low temperature stages. A DR uses the heat of the mixing
of the two stable isotopes of helium, 3He and 4He, to obtain cooling.
In order to be able to run the dilution refrigerator’s cooling cycle, one
should first obtain a starting temperature of liquid helium (4.2 K) or
below.

The cooling cycle is possible due to special and fortunate properties
of 3He and 4He mixtures at low temperatures. Figure 3.12(b) shows the
vapor pressures (gas-liquid equilibrium temperature) of 4He and 3He
respectively. As pressure is reduced, the gas-liquid equilibrium shifts
towards lower temperatures. At saturated vapor pressure pure 4He
undergoes a phase transition at 2.17 K from a normal fluid into a su-
perfluid (resulting in completely different properties of the two isotopes
below this transition temperature). Diluting the 4He with 3He results
in a decreasing superfluid transition temperature, as shown in Figure
3.12(a). At temperatures below 0.8 K (depending on concentration)
the 3He / 4He mixture will separate into two phases: a 3He rich phase
(concentrated phase) and a 3He poor phase (dilute phase). Approach-
ing absolute zero temperature, the concentrated phase becomes pure
3He while in the dilute 4He rich phase there remains 6.4 % of 3He. The
enthalpy of 3He in the dilute phase is larger than in the concentrated
phase. Hence energy is required to move 3He atoms from the concen-
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Fig. 3.12: (a) Phase diagram of 3He and 4He. (b) Vapour pressure
of 3He and 4He.

trated to the dilute phase. In a DR this energy is taken from a well
isolated environment (the mixing chamber), so cooling will occur. This
process is analogous to adiabatic expansion of a high-pressure gas into
a low-pressure gas, which absorbs heat. The heat absorbed per mole
of diffused 3He is equal to the difference in the enthalpy of the concen-
trated phase and the dilute phase, Hc(T )−Hd(T ) = T (Sc(T )−Sd(T )),
where Sc,d is the entropy of the two phases. The entropy in both phases
has a linear relation with T and the cooling power therefore is propor-
tional to T 2.

The key difference between dilution cooling and pumping cooling is
that the latent heat L of a gas-liquid transition has a lower bound even
in the limit of zero temperature, while the ‘latent heat’ of the diffusion
from the concentrated phase to the diluted phase Hc(T )−Hd(T ) goes
to zero when T → 0.

For the use of the dilution fridge here we will summarize the main
points to cool down the fridge and where the heat goes in each step.

1. 300K to 4K: Exchange gas coupled to 4He bath or pulse tube.
Heat removed by evaporation of 4He or pulse tube.

2. 4K to 1K: Condensation of helium gas while 1K pot is turned
on. Heat removed by evaporation of 4He in the 1K pot.

3. 1K to 0.3K: 3He pumped out from the mixture by a turbo pump.
Heat removed by pumped out 3He.
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4. Below 0.3K: 3He crossing the concentrated-dilute phase bound-
ary. Heat removed by pumped out 3He.

Fridge wiring

The typical cooling power of the dilution fridge is of the order of 100
µW at T = 100 mK. It is necessary to decrease any thermal link with
the environment.

There are three different mode of heat transfer: conduction, convec-
tion and radiation. In a cryogenic system, all gases (including helium)
are adsorbed in the internal cold surfaces, and therefore convection
cannot occur. Conduction and radiation, however, is ubiquitous and
must be carefully minimized. Generally the main thermal connection
between the sample and the outside environment is via the conductive
wires. Let’s consider a piece of metal with thermal conductivity K(T ),
length L and cross section A. Temperature of the two ends are T1 and
T2 respectively. The heat conduction through the wire is equal to

Q̇ = K(T )A
dT

dx
(3.1)

multiply both sides with dx we find

Q̇L = A

∫ T2

T1

K(T )dT Q̇ =
A

L

∫ T2

T1

K(T )dT (3.2)

If T2 = 300 K and T1 = 4 K, the material specific thermal integral∫ T

0
K(T )dT = Θ(T ) at T1 is negligible compared to T2. So we need to

use the material which has much higher Θ(T1) than Θ(T2).
Pure copper has very high electrical conductivity and extremely

high thermal conductivity as well. For wiring from 4K to 300K, we
want to minimize the thermal coupling from 300K into the 4K parts of
the fridge. Therefore, a resistive metal or alloys, such as phosphorus
bronze, manganin, brass, or beryllium copper, is typically used. These
materials have one or two orders of magnitude smaller thermal conduc-
tivity integral than copper, and can greatly reduce the heat conduction
through the wires.

In a DR, the wiring usually consists of several parts. The wires that
come from room temperature are typically thermally ‘anchored’ at sev-
eral stages, at 4 K (helium bath/pulse tube), at 1 K (1 K pot/still)
and finally at 900 mK, before they reach the sample, so that heat is
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dumped into an intermediate stage that has much larger cooling power,
instead of the sample. In between these stages, resistive metals such as
manganin or phosphorus bronze can be used. The final connection be-
tween the mixing chamber and the sample, however, is made with pure
copper. This is because the sample, while sitting on an insulating chip
carrier and in vacuum, has no thermal coupling to the mixing chamber
other than the sample wires. To effectively cool down the sample, it is
necessary to use a thermally conducting metal to couple it to the mix-
ing chamber. Pure copper wires are the best choice for this purpose.
The choice of wiring material and wire diameter further depends on
the acceptable wiring resistance. In general, low wiring resistance is
contradictory with low thermal coupling because of the Wiedemann-
Franz law. For typical four-wire (Kelvin) connection, a resistance of
100 Ω per wire has no effect on the measurement, but it might be prob-
lematic for certain experiments that requires low-impedance sourcing.
The last pathway of heat transfer - radiation, should also be avoided
in designing a sample stage. This can be alleviated by inserting ra-
diation shields between parts at different temperatures. In a DR, the
sample should only be able to see parts at 4K or lower. Since thermal
radiation power scales as T 4 radiation from parts at 4K is in general
not detrimental to the sample temperature, but it is still preferable
to enclose the sample in some type of opaque shroud anchored to the
mixing chamber temperature.

Filtering

Thermal radiation takes the form of incoherent electromagnetic waves
that propagate in free space. Since the photons that emanate from
hotter surfaces have higher energy density than the photons that em-
anate from colder surfaces, the net result is a heat transfer mediated
by the photons. By blocking the line-of-sight paths from the hotter
surfaces with a radiation shield, we effectively block these thermally
excited electromagnetic fields from propagating, thus cutting down on
the thermal radiation power. However, in a DR there is yet another
loophole for thermally excited electromagnetic fields to leak into the
sample, and it is again the sample wires. Being good conductors, these
wires also carry high-frequency electromagnetic waves. They act like
a wave-guide to transmit thermal radiation into the sample. Unless
proper filters are installed, frequency components up to 100 GHz can
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Fig. 3.13: Filtering in the dilution fridge.

leak into the system.

In our DR, we combine the copper-tape filter with a two-stage
lumped RC filter to achieve full-bandwidth filtering, from 16 kHz up
to optical frequencies. The RC filters are anchored at the 1K pot, while
the copper-tape filter is wrapped around the cold finger of the mixing
chamber right before connecting to the sample. The last part of the
connection towards the sample should be made by pure copper wires
anchored at the mixing chamber temperature to efficiently thermalize
the sample. The choice of R and C values also deserves some atten-
tion: if R is too large (larger than a few kΩ), each wire contributes
too much lead resistance, making four-probe measurement more tricky
to perform; if C is too large, an a.c. signal will experience a large
phase delay when passing through it, causing trouble with the lock-in
measurements and limits the maximum measurement frequency. The
full instrumentation setup is illustrated in Figure 3.13.

3.3 High magnetic field set-up

We have measured our devices in the European Magnetic Field Lab-
oratory (EMFL) upto an unprecedented high magnetic field of B =
34T. Although the measurement set up was similar to transport, the
sample probing was very different than our typical dilution fridge. The
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Fig. 3.14: Sample probe and holder in high magnetic field set-up.

structure of the magnet is much bigger and stays underground. The
dilution fridge is placed inside the magnet and the sample stick is such
that, it sits exactly at the centre of the magnetic field.

The structure of these magnets are way more complicated than
superconducting coil magnets. They have multiple layers made of dif-
ferent materials. Each of these layers gives rise to different magnetic
field.

The basic design of this magnet requires very high current flow
while operating at a magnetic field above B = 20 T. This huge current
causes instability and mechanical vibration. The mechanical vibration
caused by the magnet translates into electrical noise in our measure-
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ment. To avoid this problem we have used several filters and amplifiers
for the measurement. At the same time, the sample holder is also dif-
ferent and smaller than our typical one. In Figure 3.14 we have shown
the sample holders at the bottom of a long probe. We have used a
fixed holder and a rotating probe for different measurements that we
will describe in Chapter 5.
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Chapter 4

Chern Insulators in
Magic-angle Twisted Bilayer
Graphene

Low energy flat electronic bands in magic angle twisted bilayer graphene
host a series of strongly correlated electronic phenomena which are
otherwise absent in a single system. Some of these states such as cor-
related insulators, superconductors, magnetism, anomalous quantum
hall effect etc. are quite rare to observe. The presence of various phe-
nomena in a single platform suggests that the strong correlation breaks
certain symmetries of the system and gives rise to these many body
quantum phases. These phases can also be stabilised by several ex-
ternal parameters such as electric field, magnetic field, pressure, strain
etc. However, the exact microscopic mechanism of these states are still
unclear to the community. It is important to understand the topology
and symmetry of the flat bands in order to unveil the mechanism of
these quantum phenomena.

The low energy bands are four-fold (spin and valley) degenerate
and are separated from the higher energy dispersive bands at charge
neutrality point (CNP) [61]. Two four-fold degenerate bands can be
understood as the series of eight-fold degenerate topologically non-
trivial bands [62].

In condensed matter physics, one of the main topological invariant
of the Bloch bands is its Chern number, which dictates the quantum
phases of the particles inside the band. In this chapter, we will present
the observation of Chern bands in MATBG and underlying topological
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nature of the system. In the first section, we will introduce the general
idea of Chern number of bands and Chern insulator.

4.1 Introduction to Chern insulator

Chern insulator can be described as a filled Bloch band in a lattice
characterized by a non-zero Chern number even in the absence of an
external magnetic field. But before going into the details of the Chern
insulator, we will first discuss a system of two dimensional electron gas
in an external magnetic field.

4.1.1 Quantised Landau levels

The Lagrangian for a particle of mass m and charge −e moving in a
background magnetic field B (∇×A) is given by,

L =
1

2
mẋ2 − eẋ · A (4.1)

From this Lagrangian, we can derive the Hamiltonian of the system
given by,

H =
1

2m
(p+ eA)2 (4.2)

Since the electrons are restricted in the plane, we can write x = (x, y)
and consider the magnetic field to be constant and perpendicular to
the plane, (∇×A) = Bẑ. The canonical commutation relations are

[xi, pj] = ih̄δij and [xi, xj] = [pi, pj] = 0 (4.3)

We will first calculate the energy spectrum by using the pure algebraic
method, where we don’t have to specify a choice of gauge potential A.
We will also consider,

mẋ = p+ eA = π (4.4)

Now, the commutation relations from the Poisson bracket are,

[πx, πy] = −ieh̄B (4.5)

Let us introduce the raising and lowering operator as,

a =
1√
2eh̄B

(πx − iπy) and a† =
1√
2eh̄B

(πx + iπy) (4.6)
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In terms of these operators the Hamiltonian can be written as,

H =
1

2m
π · π = h̄wB(a

†a+
1

2
) (4.7)

In this Hilbert space the energy eigenstates can be constructed by the
creating and annihilating operator as,

a†|n⟩ =
√
n+ 1|n+ 1⟩ and a|n⟩ =

√
n|n− 1⟩ (4.8)

In this picture the energy of the state |n⟩ is,

En = (n+
1

2
)h̄ωB (4.9)

In the presence of a magnetic field, the energy states of a particle
get equally spaced, and the spacing is proportional to the magnetic
field, B. These energy levels are called Landau levels. Unlike the
harmonic oscillator, each of these energy state has a degeneracy, which
is associated with the choice of gauge potential, A.

Landau gauge

We can choose the gauge potential such that,

∇×A = Bẑ (4.10)

In the Landau gauge picture, A = xBŷ, where the magnetic field B
has both translational and rotational symmetry in the (x, y) plane.
However, A breaks translational symmetry in the x direction and also
breaks rotational symmetry. In this picture, the Hamiltonian can be
written as,

H =
1

2m

(
px

2 + (py + eBx)2
)

(4.11)

The energy eigenstates are

Ψk(x, y) = eikyfk(x) (4.12)

Acting on this wavefunction with the Hamiltonian, the operator py will
get replaced by its eigenvalue h̄k,

HΨk(x, y) =
1

2m
(p2x + (h̄k + eBx)2)Ψx(x, y) ≡ HkΨk(x, y) (4.13)
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The energy eigenvalues are

En = h̄wB

(
n+

1

2

)
(4.14)

In this picture if we write down the full wavefunction in the explicit
form,

Ψn,k(x, y) ∼ eikyHn(x+ kl2B)e
−(x+kl2B)2/2l2B (4.15)

Here, lB =
√

h̄
eB

is called the magnetic length which governs any quan-

tum phenomena in a magnetic field.

Degeneracy

The wavefunction depends on the two quantum numbers n and k.
However, the energy of each state depends on only one quantum num-
ber n.This indicates that the eigenstate has a degeneracy associated
with it. If we consider a sample with two length scales in the x and y
direction to be Lx and Ly, the total number of states will be

N =
L

2π

∫ 0

−Lx/l2B

dk =
LxLy

2πl2B
(4.16)

In the quantum mechanical picture, total current is given by,

J = − e

mA

∑
filledstates

⟨Ψ| − ih̄∇+ eA|Ψ⟩ (4.17)

In the Landau gauge picture, if we apply an electric field in the x
direction, the current in the x-direction is, Jx = 0. The current in the
y direction is given by,

Jy = − e

mA

ν∑
n=1

∑
k

⟨Ψn,k| − ih̄
∂

∂y
+ exB|Ψn,k⟩ (4.18)

Now if we simplify the Jy compare it with the conductivity tensor, we
have,

σxx = 0 and σxy = − eν

Φ0

(4.19)

Or, in terms of resistivity,

ρxx = 0 and ρxy =
Φ0

eν
=

2πh̄

e2ν
(4.20)
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This is the typical Quantum hall resistivity in the Landau gauge pic-
ture. In order to understand the Chern insulator, we have to first
realize the concept of Berry phase and Chern number of a quantum
mechanical particle in a magnetic field.

4.1.2 Berry phase and Berry connection

Berry phase is an important concept in the topological band theory.
It tells us that in quantum adiabatic transport under a slowly varying
magnetic field, the wavefunction of the particles can be modified by
terms other than the dynamical phase. We will present a brief descrip-
tion of the Berry phase of a particle in an external magnetic field and
later on calculate the Chern number from it.

Computing the Berry phase

Let us consider a system with xa number of degrees of freedom. The
Hamiltonian of this system can be written as H(xa, λi), where λi are
the parameters of the Hamiltonian. These parameters are fixed, with
their values determined by some external apparatus. To begin with,
the system is in the state |Ψ⟩. If we change the parameter λ of the
Hamiltonian, the state itself will also evolve as |Ψ(λ(t))⟩. If we vary
the parameter λ and finally put it back to the initial state, according
to the adiabatic theorem in quantum mechanics, the energy eigenstate
will also remain in its initial state, except it will gain a phase difference.
The new state will be

|Ψ⟩ → eiγ|Ψ⟩ (4.21)

The wavefunction of the system will evolve through the time dependent
Schrödinger equation,

ih̄
∂|Ψ⟩
∂t

= H(λ(t))|Ψ⟩ (4.22)

Now, for every choice of the λ there will be a ground state with fixed
phase, and these states are defined as |n(λ)⟩. According to the adia-
batic theorem, the ground state can be written as,

|Ψ(t)⟩ = U(t)|n(λ(t))⟩ (4.23)
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Where U(t) is some time dependent phase. If the particle traverses in
a closed path C in the parameter space, U(t) will be given by,

U(t) = exp

(∮
C

⟨n| ∂
∂λi

|n⟩λ̇idt
)

(4.24)

The Berry curvature is given by,

Ai(λ) = −i⟨n| ∂
∂λi

|n⟩ (4.25)

And finally the Berry phase is given by,

eiγ = exp

(
−i
∮
C

Ai(λ)dλ
i

)
(4.26)

The Berry curvature is the ingredient to calculate the Chern number of
a band in the crystal. We will now consider a two dimensional crystal
to calculate the Chern number of the electronic band.

4.1.3 Chern number of the band

In the last section, we learned that Berry phase is the integral of the
Berry potential over a closed path. In this thesis we will always consider
a two dimensional electronic system where this closed curve is given
by the the Fermi surface of the Brillouin zone (BZ). In this picture,
The Chern number of the filled band is given by the the integral of
the Berry curvature over the full Brillouin zone and is related to the
Hall conductance. In this section, we will derive the Chern number of
a filled band from the Berry curvature.

Let us consider a spin in a magnetic field B⃗. In Hilbert space, it
consists of two states. The Hamiltonian can be written as,

H = B⃗ · σ⃗ −B (4.27)

This Hamiltonian has two eigenvalues, 0 and −2B. We can denote
the ground state as |↓⟩ and the excited state as |↑⟩. So, we can write
H|↓⟩ = −2B and H|↑⟩ = 0.

Spherical polar co-ordinate

We will consider the magnetic field B⃗ in spherical polar co-ordinate.
The Hamiltonian can be written as,

H = −B
(
cos θ − 1 e−iϕ sin θ
e+iϕ sin θ − cos θ − 1

)
(4.28)

66



Two normalised eigenstates are given by,

|↓⟩ =
(
e−iϕ sin θ/2
− cos θ/2

)
and |↑⟩ =

(
e−iϕ cos θ/2
sin θ/2

)
(4.29)

We can now easily calculate the Berry phase arising from these states,

Aθ = −i⟨↓| ∂
∂θ

|↓⟩ = 0 and Aϕ = −i⟨↓| ∂
∂θ

|↓⟩ = − sin2

(
θ

2

)
(4.30)

The resulting Berry curvature is given by,

Fθϕ =
∂Aϕ

∂θ
− ∂Aθ

∂ϕ
= −1

2

(
sin

θ

2

)
(4.31)

Now in the Cartesian co-ordinate, the Berry curvature takes the form,
Fij = −ϵijk Bk

2B3 . In order to calculate the Berry phase from this, let us
consider a closed path C that enclosed the surface S. The Berry phase
is given by, ∫

FijdSij = 2πC (4.32)

This integer C ∈ Z is called the Chern number.

Hall conductance and Chern number

The Hall conductance equals the integral of the Berry curvature of the
filled bands over the full Brillouin zone (BZ). The Hall conductivity of
a band insulator, when the Fermi level is in the gap, is the integral of
the Berry curvature over the BZ [63].

σxy =
e2

h

1

2π

∫ ∫
dkxdkyFxy(k) (4.33)

Hence, from our Hall conductance transport measurements, we can
calculate the Chern number of the band.

4.2 Different degeneracies in MATBG

The low energy physics of magic angle twisted bilayer graphene is domi-
nated by the moiré Brillouin zone of the superlattice which results from
the twisting of the two layers of graphene. In the mini BZ of MATBG,
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several symmetries are present in the ground state. C2x, C3z and C2zT
are the rotational symmetry present in the system. This system also
has unitary particle-hole symmetry. All moiré bands are four fold de-
generate, valley (K and K ′) and spin (↑ and ↓). We will discuss this
degeneracy in the next following sections. The eightfold Landau level
degeneracy in bilayer graphene is reduced to fourfold. Experimentally,
this degeneracy lifting is always seen in samples showcasing the cor-
related insulators and superconductivity. Importantly, each Landau
level emanating from charge neutrality is eightfold degenerate. This
degeneracy can be explained by noting the doubling due to spin, val-
ley and layer degrees of freedom. We remark that the layer index is
not generally a good quantum number, however, because these low-
lying Landau levels can be understood as coming from the mini Dirac
points, there is still a twofold degeneracy arising from the mini-valley
degeneracy.

4.3 Basic characterization of MATBG

I have started my PhD when the field of magic angle twisted bilayer
graphene has just started (2018). So for obvious reason, I have spent
a long time figuring out the optimal stacking and fabrication process
to get clean and homogeneous devices. In this section, we will show
some basic characterization of the magic angle twisted bilayer graphene
devices and how to calculate the twist angle of these devices from the
Landau fan diagram.

4.3.1 Temperature dependence of the resistance

Twisted bilayer graphene hosts a pair of flat bands when rotated by
an angle θ close to the first magic angle θM = 1.1◦. As we mentioned
in Chapter 1, due to the formation of this flat band, electrons loose
their kinetic energy and get confined in the band. This results to a
higher resistance and lower conductance in our devices compared to the
normal AB Bernal stacked bilayer graphene. The room temperature
four probe resistance for a device close to magic angle is of the order
of Rxx = 10 - 20 kΩ. This is the very first check that we measured
in a room temperature vacuum probe station. In this process, we
discard the devices which have lower four probe resistance (Rxx < 5
kΩ). After this screening process, we measured the potentially good
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devices in the 1.5 K cryostat. Where we thoroughly measured the Rxx

as a function of gate voltage Vg at different temperatures staring from
room temperature (300 K) until T = 1.4 K.

We first plotted the resistance in the temperature range of T =
40 K to 1.4 K in Figure 4.1. The first line curve in Figure (a), is at
40 K which clearly shows a oscillatory pattern in Rxx. As we decrease
the temperature, this oscillatory pattern develops to either charge neu-
trality point (CNP) or band insulator (BI) or different integer filling
insulating states. The last line curve in Figure (a) is at T = 1.4 K.
The sharp peak in resistance at Vg = 0 Volt corresponds to the CNP
with the resistance value of Rxx = 22 kΩ. As we keep increasing the
gate voltage either in positive or in negative direction, the band gets
populated with increased number of electrons or holes. Around Vg =
(±) 1.4 Volt, we found another highly resistive peak which corresponds
to the band insulator. This marks the full filling of the band. At this
point we have a band gap where the density of states (DoS) diverges
and the conductance becomes very small giving rise to high resistance
(Rxx ∼ 150 kΩ).

We have further measured the device in the dilution fridge with a
base temperature of T = 20 mK. We will discuss the detailed tempera-
ture dependence of different filling inside the flat band in Chapter 8. In
this section we want to draw attention to the superconducting pockets
that develop close to the half filling of the band. In Figure (b), the last
curve at T = 20 mK has three zero-resistive superconducting pockets
at Vg = - 1.0 Volt (-1/2 filling) and at Vg = + 0.75 & + 0.9 Volt (before
and after +1/2 filling). We will discuss the superconducting states in
detail with several measurements later in this chapter. Before that, we
will calculate the exact twist angle of this device from the magnetic
field dependence of Rxx.

4.3.2 Extraction of the twist angle

Accurate calculation of the twist angle of the devices is very important
in understanding the phenomena observed in our devices. We used
several methods to determine the twist angle of our devices.
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Fig. 4.1: Temperature dependence of the longitudinal resistance Rxx

as a function of gate voltage Vg. (a) shows Rxx as a function of Vg in
the temperature range of T = 40 K to 1.4 K. Charge neutrality point
(CNP) and band insulators (BI) are marked. (b) shows the same
Rxx vs. Vg for the temperature range of T = 10 K to 20 mK. This
clearly shows the insulating half filling state in the electron doped side
with two superconducting pockets on each side and an undisturbed
superconducting pocket at the hole doped side.
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Method 1 :

The superlattice carrier density nS is defined as the total number of
electrons required to completely fill one flat band in the superlattice.
nS is related to the twist angle θ by,

ns =
4

A
≈ 8θ2√

3a2
(4.34)

where A is the unit cell area and a = 0.246 nm is the lattice constant
of graphene. When the twist angle is sufficiently small (1◦ < θ < 3◦),
the superlattice carrier density nS is associated with a pair of single
particle band gaps at their corresponding Fermi energy. Therefore,
we can calculate the twist angle θ, from the measured density of the
insulating states at the band edge of the superlattice according to
equation 4.34. Experimentally we apply local gate voltage Vg to tune
the carrier density inside the band. So first we will describe the process
to calculate the carrier density n from the applied gate voltage Vg via
the graphite gate. The graphite gate acts as a parallel plate capacitor.
The carrier density n is related to the Vg by this equation,

n =
CgVg
e

(4.35)

where Cg is the gate capacitance. We derive this Cg from the Landau
fan diagram of the flat band. Under an external magnetic field the flat
band develops several Landau level starting from CNP. We consider a
LL with filling factor νLL = 4 to calculate the gate capacitance where
they are related by,

νLL =
nh

eB
=

h

e2
CgVg
B

(4.36)

From the slope of a Landau level in Vg-B phase space Cg can be calcu-
lated for a particular LL. Once we know the value of Cg for a particular
device, the superlattice density nS can be easily found out from the
resistance peak at the band insulator. In this device the voltage re-
quired to completely fill the band is VS = 1.4 Volt. So the superlattice
carrier density will be given by nS = CgVS/e. Finally we calculate the
twist angle from equation 4.34. In Figure we have shown a resistance
curve for a device with twist angle θ = 1.04◦
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Method 2 :

There is another method which involves Hofstadter’s butterfly to ex-
tract the twist angle of the devices. This method is more useful for the
devices with smaller twist angle. The effect of applying strong mag-
netic fields such that the magnetic length becomes comparable with
the superlattice potential length-scale is described by the Hofstadter’s
butterfly. In the density picture this model is given by the Wannier
diagram where the Landau levels are represented by,

n

nS

= ν
ϕ

ϕ0

+ s (4.37)

where ϕ is the magnetic flux through an unit cell of the superlattice,
ν is an integer and s = 0 labels the main Landau fan and s = ± 1
corresponds to the first satellite Landau fan etc. Two adjacent Landau
fans intersect when ϕ/ϕ0 = 1/q or, 1/B = qA/ϕ0, where q is an integer.
Therefore, we expect to see Landau level crossings at periodic intervals
of 1/B with the periodicity proportional to the unit cell area A. In
Figure, we plotted the magneto-transport data as a function of n and
1/B. From the periodic crossings we calculated the unit cell area to
be A = which gives the twist angle θ = 0.95◦.

Once we measured a device the twist angle close to the magic angle,
we further characterize it thoroughly in the dilution fridge. We have
observed several strongly correlated phenomena such as correlated in-
sulators, superconductors at different integer fillings of the flat band.
Additionally, we found magnetic states and Chern insulators in our de-
vices upon applying an external magnetic field. We will first describe
the superconductivity of the device which is one of the most charac-
teristic features of a magic angle twisted bilayer graphene (MATBG).

4.3.3 Superconductivity

In two dimensional systems, observation of superconductivity can be
verified by several measurements such as, RT -transition, dc IV charac-
teristics, Fraunhofer oscillation, Berezinskii-Kosterlitz-Thouless (BKT)
transition etc.

In Figure 4.2 we have shown different characteristics measurements
of a superconducting state in MATBG. Figure (a) shows the typical
R vs T of a superconductor. The normal state resistance of this state
is Rxx = 6 - 7 kΩ. The superconducting transition temperature, given
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Fig. 4.2: Temperature dependence of the longitudinal resistance Rxx

as a function of gate voltage Vg. (a) shows Rxx as a function of Vg in
the temperature range of T = 40 K to 1.4 K. Charge neutrality point
(CNP) and band insulators (BI) are marked. (b) shows the same
Rxx vs. Vg for the temperature range of T = 10 K to 20 mK. This
clearly shows the insulating half filling state in the electron doped side
with two superconducting pockets on each side and an undisturbed
superconducting pocket at the hole doped side.

by the temperature at which resistance of the device decreases by 50%
of it’s normal value is Tc = 650 mK. However, in two dimensional
superconductor, BKT transition is more accurate to find out the Tc
of the system. Figure (b) illustrates the differential voltage (dV/dI)
as a function of bias current (Idc) at different temperature from T
= 20 mK to 800 mK. According to the BKT theory, the line fitting
of dV/dI ∝ I2 defines the transition temperature. This dictates the
transition temperature to be Tc = 550 mK which almost in agreement
with the R vs T transition.

In Figure (c) we have plotted the dc IV characteristics of the su-
perconductor from the temperature T = 20 mK to 800 mK. The black
curve in this figure corresponds to the lowest temperature IV with the
flat region in it which determines the critical current Ic = 20 nA of the
superconductor.

In other devices, we observed several superconducting domes at dif-
ferent fillings along with correlated insulating states sometimes. Fig-
ure 4.3 (a) shows longitudinal resistance Rxx as a function of filling
factor for several temperatures from 100 mK to 40 K. Correlated in-
sulating states appeared at ν = ±2 states accompanied by two strong
superconducting domes. Figure (b) corresponds to the temperature
dependence of the resistance at optimal doping of the superconductor.
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Fig. 4.3: Superconductivity. (a) Longitudinal resistance Rxx vs. ν.
(b) Temperature dependence of longitudinal resistance Rxx at opti-
mal doping of the superconducting dome. (c) Differential resistance
dVxx/dI as a function of DC current Idc and B showing Fraunhofer
patterns.
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Fig. 4.4: Orbital magnetism. (a) shows temperature dependence of
the hysteresis loop of longitudinal resistance Rxx as a function of B⊥.
(b) shows colour map of differential resistance dVxx/dI vs. DC current
Idc and B⊥ with carrier density fixed, showing the critical current of
the magnetic state. (c) Line-cut of dVxx/dI in (b) at different B⊥,
with critical current indicated by the deeps of dVxx/dI.

In this device we have observed a critical temperature of Tc = 5 K
(with a transition width around 7K), which is one of the highest Tc
reported in MATBG devices so far. We also note that the definition
of Tc as the 50% normal-state resistance value (currently used in all of
the work reported in this field) give some uncertainty due to transition
broadening might induced by structural inhomogeneity. We further
measured the differential conductance dVxx/dI as a function of per-
pendicular magnetic field and d.c. current bias, Idc. Fraunhofer like
pattern confirms the existence of superconductivity in our devices.

4.3.4 Magnetism

In addition to superconductors we also have observed a magnetic or-
dered state close to ν = +1 state. Figure 4.4 represents a detailed
measurement of this state. At zero magnetic field we did not observe
any peak in Rxx. Above a magnetic field of T = 1 T, a strong hysteretic
increase of Rxx appeared. As we measured Rxx as a function of upward
and downward magnetic field, a clear hysteretic behavior was observed
indicating the formation of a magnetic state. The hysteretic behavior
faded out above T = 750 mK. We further measured the differential re-
sistance as a function of B⊥ and d.c. excitation current, which shows
a critical current for this state pointing to a typical phase transition.
Overall, these findings may suggest a close competition between topo-
logically trivial and non-trivial insulators at B⊥ = 0 T, which directly
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Fig. 4.5: Optical images of the device A1, A2, A3. (a) A1; (b) A2;
(c) A3. The optical image of final devices etched in multi-terminal
Hall bar geometry from graphite/hBN/MATBG/hBN stack. The red
and blue lines in the device region mark the probes used for the mea-
surement of Rxx and Rxy respectively. Scale bars are 5 µm.

impacts the superconductor and orbital magnet phases.

4.4 Chern insulators in MATBG

Now we will discuss the main result of this chapter which is the obser-
vation of Chern insulators in MATBG. As we have mentioned many
times earlier that the flat bands in MATBG emerged as a rich platform
to explore strongly correlated phenomena. The magnetic field phase
space of the flat band also unveil many information about the band
symmetry and topology of the system. Electron interaction can break
the symmetry of the band and give rise to several quantum phases.
The specific symmetry and degeneracy of these flat bands have been
discussed in previous sections.

Here we will describe the studies of three MATBG devices close to
magic angle θ = 1.03 - 1.10◦. These devices were not aligned to the
hBN substrates. Figure 4.5 shows the optical images of these three
devices with proper scale bar. We perform four-terminal longitudinal
resistance (Rxx) and Hall resistance (Rxy) measurements, where the
carrier concentration ν in the MATBG is continuously controlled by
voltage Vg at the graphite gate. Applying a perpendicular magnetic
field B⊥ at T = 1.5 K reveals a set of broad wedge-shaped regions in
the ν–B phase space, where Rxx ≈ 0 Ω. We also measured the Hall
resistance Rxy of these states where, Rxy = h/Ce2. These quantized
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regions follow a linear slope of,

dν

dB
=
Ce

h
(4.38)

which can be traced to different integer fillings ν at B = 0. These
singular states show a clear correspondence between the Chern number
and filling factor (C, ν). We find a robust sequence for the (±4, 0),
(±3, ±1), (±2, ±2) and (±1, ±3) states in different devices.

4.4.1 Magnetic field dependence of the longitudi-
nal resistance

We will separately show the existence of correlated Chern insulators
in three different devices.

Device A1(θ = 1.04◦)

Figure 4.6 demonstrates the Chern insulating states combined with the
Landau levels inside the flat band of MATBG. Device A1 has prominent
Chern insulators with Chern number C = ±4, 3, 2, 1 emerging from the
subsequent superlattice unit cell filling of ν = 0,+1,+2,+3 without
interrupted by any Landau gaps. Since we did not observe Landau
levels in this device even at lowest temperature, signature of Chern
states confirms their robust topological origin.

At lower T, we also observe a clear set of Landau-level (LL) fans,
which follow the typically reported fourfold degeneracy at the charge
neutrality point. The energy gaps associated with these states are up
to an order of magnitude smaller than the gaps of the (C, ν) states,
which have values of ∆ ≈ 1 meV. The (C, ν) states are more visibly
pronounced, and some already quantize below B⊥ < 0.3 T and T < 10
K. This is in contrast to LL quantization.

Device A2(θ = 1.03◦)

Figure 4.7 shows Chern states along with the Landau levels emerging
from CNP and ν = +2 state in device A2. In addition, it has a new set
of Landau levels emerging from ν = ±2 states confirming the formation
of new Fermi surface. In device A2 we observed signature of several
Chern insulators (C = ±1,±2,±3) emerging from a single filling, ν
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Fig. 4.6: Full range magnetic field phase diagram of flat band in
device A1 at 30 mK. (a) Longitudinal resistance (color plot) as a
function of filling factor, ν and magnetic field B⊥. (b) Schematics of
the Landau level and Chern insulators shown in (a). Dark orange lines
correspond to the Chern insulators (C, ν) = (±4, 0), (3, 1), (2, 2), (1, 3).
Blue lines are the Landau levels emerging from CNP. Light orange re-
gions define the position of superconductors in the phase space. We
have found that the band insulator (electron doped side of (3,1) state)
becomes highly resistive when B > 3 T at the base temperature of
20-30 mK, and the excitation current starts to be highly suppressed,
so degrading the data quality. This issue is not present for the mea-
surements at 1.5 K, where the current is not critically suppressed by
the insulator, and the data clearly shoes a correct slope for the (3,1)
state.
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= ±3, which hints the competition between different Chern numbers.
However, they are not fully developed due to the interruption by ν =
±3 interaction induced gap.

Device A3(θ = 1.10◦)

Figure 4.8 shows the similar Chern states along with the Landau levels
emerging from CNP and ν = +2 state in device A3. In addition, it has
a new set of Landau levels emerging from ν = ±2 states confirming the
formation of new Fermi surface. In device A2 we observed signature
of several Chern insulators (C = ±1,±2,±3) emerging from a single
filling, ν = ±3, which hints the competition between different Chern
numbers. However, they are not fully developed due to the interruption
by ν = ±3 interaction induced gap. We also observed a signature of
orbital magnet at ν = +1 state in device A3.

However, these states do not form in a zero B⊥ field. Although they
require a B⊥ field to nucleate, the (±4, 0), (3, 1) and (−2, −2) states
already form at a negligibly small B⊥ > 0.1 T. The very small values
of the field for which these states appear, especially the (−2, −2) state,
suggests that they are very competitive to the true ground state in the
zero field. In contrast, the (−3, −1) and (±1, ±3) states require higher
fields of B⊥ > 2 T. Figure 4.9 summarizes the corresponding critical
B⊥ fields for all the states and devices.

We interpret these states as correlated Chern insulators (CCIs)
that are driven by interactions and stabilized by a small B⊥ field.
These states are different than Landau levels in graphene system [64,
65]. These states are possible because the underlying flat bands of
MATBG can be thought of as Chern bands with eightfold valley, spin
and sublattice degeneracy, which carry opposite Chern numbers C =
1 and C = -1 [66–69]. Lifting the degeneracy of these bands by gaping
out their Dirac points and polarizing them can create topologically
non-trivial gaps. This is analogous to the interaction-driven formation
of quantum Hall ferromagnets from degenerate LLs in large B fields,
although the microscopic origins are distinct. In MATBG, the flat
moire bands allow interactions to dominate and open CCI states in
the zero B-field limit.

The exact sequence of Chern numbers at different fillings gives an
insight into the dominant symmetry-breaking mechanisms. Unlike in
previous studies, where C2 symmetry was deliberately broken by the
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Fig. 4.7: Full range magnetic field phase diagram of flat band
in device A2 at 30 mK. (a) Longitudinal resistance (color plot)
as a function of filling factor, ν and magnetic field B⊥. (b)
Schematics of the Landau level and Chern insulators shown in (a).
Dark orange lines correspond to the Chern insulators (C, ν) =
(±4, 0), (±3,±1), (±2,±2), (+1,+3). Blue lines are the Landau lev-
els emerging from CNP and ν = -2. Light orange regions define the
position of superconductors in the phase space.
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Fig. 4.8: Full range magnetic field phase diagram of flat band
in device A3 at 30 mK. (a) Longitudinal resistance (color plot)
as a function of filling factor, ν and magnetic field B⊥. (b)
Schematics of the Landau level and Chern insulators shown in (a).
Dark orange lines correspond to the Chern insulators (C, ν) =
(±4, 0), (±2,±2), (−3,−1)(±1,±3). Blue lines are the Landau lev-
els emerging from ν = 0, ±2. Light yellow regions mark the position
of the orbital magnet.
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Fig. 4.9: Schematic of the cumulative phase diagram for several de-
vices, summarizing the observed CCI, superconductor (SC) and or-
bital magnet (OM) in theν − B⊥ plane. The position of the device
icons for each CCI corresponds to the critical B⊥ field values (uncer-
tainties indicated by the error bars are defined by the full-width at
half-minimum values of dRxx/dB⊥ versus B⊥ for fixed C) at which
these states form. Similarly, the optimal doping positions for SC are
marked by the corresponding device icons.

alignment of MATBG with hBN substrates, we avoid this by keeping
the angle between the crystallographic orientations of MATBG and
hBN as θ > 10◦. Generally, broken C2 symmetry (and keeping T
unbroken) leads to a sign reversal of the Chern numbers in the K and
K ′ valleys; in contrast, broken T symmetry (and keeping C2 unbroken)
is expected to preserve their Chern numbers. This can have a clear
impact on the resulting many-body states and the predicted Chern
numbers for each ν.

Breaking either symmetry at charge neutrality as a parent state of
the other fillings predicts the (±2, ±2) and (±1, ±3) states, C2 break-
ing predicts the existence of the (±1, ±1) and (0, 0) states, instead
of the (±3, ±1) and (±4, 0) states predicted from the breaking of T
symmetry and observed in the experiment. Therefore, the interactions
in the B⊥ field in MATBG specifically break the T symmetry at ν =
0 and break both T and C2 symmetries at ν = ±1 and ±3.
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Fig. 4.10: Chern insulators in device A1. (a) Colour plot of Rxx

versus ν and B⊥, measured at T = 1.5 K. The white lines indicate the
trajectories of four different topologically non-trivial Chern gaps with
(C, ν) indices of (4, 0), (3, 1), (2, 2) and (1, 3). (b) Corresponding
Hall conductance σxy versus ν and B⊥ (top) and line cuts showing
quantized σxy and vanishing longitudinal conductance of the Chern
insulators at B⊥ = 8 T (bottom).

4.4.2 Magnetic field dependence of the transverse
resistance

As we have discussed in previous section, the Chern number of the
Chern insulator is related to the Hall conductance. In this section
we will discuss the Hall conductance of these Chern states in detail.
Figure 4.10 summarizes both Rxx and Rxy for the electron side of the
flat band. Figure (a) shows the colour plot of four Chern insulators
(C, ν) = (+4, 0), (+1, +3), (+2, +2) and (+3, +1). The dark blue
coloured wedge shaped regions show perfect zero resistance. Figure (b)
shows the Hall conductivity σxy for these Chern states. The σxy values
are perfectly quantized at the specific integer quantization value. The
bottom panel is the line cut for both Rxy and σxy taken at B = 8 T.
For the Chern state (C, ν) = (+4, 0), (+1, +3), (+2, +2) and (+3,
+1) the Hall conductance σxy is quantized at a value of 4e2/h, 3e2/h,
2e2/h, 1e2/h correspondingly. The integer value in front of the e2/h
gives the Chern number C.

Here we have to discuss a central question. Why do the Chern
insulators require a finite magnetic field to nucleate? Since the (±4,
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0), (3, 1) and (−2,−2) states already occur in the weak-field limit
as low as B⊥ ≈ 0.1 T corresponding to a negligibly small magnetic
flux per moire unit cell of only Φ < 0.01Φ0 (where Φ0 is the flux
quantum), we find it unlikely that the onset of the Hofstadter sub-
bands is responsible. Because T breaking is crucial to the observed
sequence of Chern states, we would expect the application of weak B⊥
to stabilize this phase because the applied magnetic field breaks the T
symmetry (but not C2). At B⊥ = 0, the many-body states of different
Chern numbers, including topologically trivial C = 0 states, closely
compete with one another in energy and are obscured by disorder, but
the application of B⊥ energetically favours the states with higher C
values [70–72].

4.5 Broken symmetry in the flat band

We have further explored two different scenarios where either C2 or
time reversal symmetry T is broken. Breaking different symmetries of
the parent state in charge neutrality (ν = 0) can give rise to differ-
ent observable especially at ν = 0 and 1 state. As shown in following
Figure breaking C2 symmetry gives opposite Chern numbers in differ-
ent valleys. In this scenario, the only allowed total Chern numbers at
ν = 0 state are C = 0 instead of C = ±4 observed experimentally and
well explained by broken T symmetry. Similarly, breaking C2 symme-
try (parent state at ν = 0) always leads to a total Chern number of
C = ±1 at ν = ±1 instead of C = ±3 we observed experimentally.
By comparing our experiential results and following schematic, the
Chern insulating state stabilized at magnetic field breaks T symmetry
at ν = 0 and breaks both T and C2 at ν = ±1,±3.

4.6 Difference between Chern insulators

and Landau levels

We calculated the energy gap of these Chern insulators and these are
upto one order magnitude larger than the typical Landau level gaps in
these samples.

Figure 4.12 shows the temperature dependence of both longitudinal
and transverse resistance Rxx, Rxy of the Chern insulators. We have
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Fig. 4.11: Different scenarios for broken C2 and T symmetry at
different integer fillings. (a) Possible Chern states at all the integer
filling when time reversal T symmetry is broken but C2 is preserved at
ν = 0. Our physical observable at ν = 0, 1 come under this scenario.
(b) Chern states at all integer filling when C2 is broken but time
reversal symmetry T is preserved.
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measured the Chern states at several temperature starting from T =
20 mK till 10 K at different magnetic fields. Upper panel of Figure
(a), (b), (c), (d) are the plot of Rxx as a function of filling factor
ν at 6 T for the Chern states (4,0), (3,1), (2,2), (1,3). We have ob-
served that the Rxx goes to zero because of the quantization of the
state. Lower panel is the transverse conductivity σxy as a function of
filling factor ν. We calculated the gap of all the Chern states from
the temperature activation behavior, Rxx ∼ e−∆/kT at 6T. Figure (e)
is the longitudinal resistance Rxx in logarithmic scale as a function
of inverse temperature (1/T ). By the Arrhenius fitting (shown in the
corresponding dotted straight lines) we have calculated the gaps for
each Chern state. Strikingly, these gaps ∆(4, 0) = 11.2K, ∆(3, 1) =
7.1 K, ∆(2, 2) = 10.4 K, ∆(1, 3) = 4.4K are much higher than the
typical Landau gaps in MATBG. This allows us to disentangle Chern
states from typical Landau levels in the system.

In this chapter, we have discussed a detailed view of the high mag-
netic field phase diagram of MATBG and demonstrates its underlying
topology and symmetry. The topological nature of the flat bands in
MATBG observed in this study has implications for the potential un-
derstanding of the superconducting phase, which needs to be under-
stood on the basis of the ground states found here. To further com-
prehend the microscopic mechanisms driving the CCI and interactions
between the various quantum states (CCI, superconductor and orbital
magnet), one possible direction is to control the correlated states by
inducing dielectric screening or spin–orbital coupling in higher-quality
devices in further experiments.
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Fig. 4.12: Temperature dependence and gap extraction for all the
Chern insulators. (a), (b), (c), (d) upper and lower panels shows
the longitudinal resistance, Rxx and transverse conductivity σxy of the
Chern insulator (4,0), (3,1), (2,2) and (1,3) as a function of ν taken
at several temperatures. Lower panel corresponds to the quantization
of σxy below 600mK. (e) Extraction of gap for all the Chern insula-
tors. Longitudinal resistance Rxx is plotted as a function of inverse
temperature (1/T ) at 6T. The data is measured for device A1
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Chapter 5

Flat Bands at High Magnetic
Field

In the previous chapter, we have discussed an important emerging
phenomena in magic angle twisted bilayer graphene while placed in
an external magnetic field. However all the results were restricted
upto a field of B = 8 T. In this chapter, we will discuss the detailed
magneto-transport behaviour of the flat band of MATBG while placed
in an unprecedented high magnetic field upto B = 34 T. The high
magnetic field creates a fractal electronic phenomena called Hofstadter
butterfly in a moiré superlattice system. Although people have studied
the magnetic field dependent phenomena in MATBG for a few years,
high magnetic field behaviour was unexplored before.

Previous studies of the electronic properties of graphene–hexagonal
boron nitride (hBN) superlattices in the presence of high magnetic field
have provided great insight into the Hofstadter spectrum. However,
flat electronic bands with strong correlation and non-trivial topology
have never been explored in this light before. Together, these phe-
nomena make MATBG an interesting platform to study Hofstadter
spectrum enriched with band topology and strong interaction.

In the first section of this chapter, we will describe the basic physics
of the Hofstadter butterfly in any superlattice system. Then we will
discuss the Hofstadter spectrum of MATBG in detail and report the
observation of re-entrant flat electronic bands at one magnetic flux per
moiré unit cell.
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5.1 Hofstadter butterfly in the flat band

of MATBG

Electrons develop a discrete quantized energy spectrum while moving
in a spatially varying periodic lattice potential. Additionally, in two
dimensions, when moving under a perpendicular magnetic field, elec-
trons develop a quantized energy spectrum, characterised by discrete
energy levels, called Landau levels. As a result, two dimensional elec-
trons when placed under both magnetic field and a periodic lattice
potential generate a recursive energy spectrum, called the Hofstadter
spectrum. This complex energy spectrum results from the interplay
between two characteristic length scales associated with periodic lat-
tice potential and the magnetic field. The Hofstadter butterfly energy
spectrum was the first quantum fractal spectrum discovered in physics.

Even though it was theoretically predicted by Douglas R. Hofs-
tadter back in 1976, experimental efforts have always been limited by
the commensuration of two length scales in real systems. The period-
icity in typical atomic lattices is of the order of few angstroms, which
would require a magnetic field of ∼ kT to fulfill the commensurability
condition. On the other hand, artificially engineered materials (peri-
odicity of hundreds of nanometers) require a magnetic field that is too
small to overcome the disorder completely.

Many experimental efforts have been made to create superlattices
which can achieve the commensuration condition within an affordable
limit. One of the successful approaches was the moiré superlattice
of graphene and hBN in 2013. In this section, first we briefly intro-
duce the concept of the Hofstadter butterfly, including the theoretical
model of Bloch electrons in the magnetic field, the resulting Harper’s
equation and its solution, and its realizations in non-graphene sys-
tems. Then, we discuss the ways to realize the fractal Hofstadter
spectra in graphene, and introduce three types of graphene superlat-
tice structures, including graphene/hBN, twisted graphene layers and
nano-fabricated graphene superlattices. In particular, the details of the
fractal Hofstadter spectrum in graphene will be discussed extensively
for the graphene/hBN superlattice and the twisted bilayer graphene.
In the end we will talk about the motivation of our work and the spe-
cial features of the spectrum in MATBG that reveals a qualitatively
new Hofstadter spectrum, which arises due to the strong electronic
correlations in the re-entrant flat bands.
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5.1.1 Hofstadter butterfly in moiré superlattice

In his seminal paper in 1976, D. R. Hofstadter considered the Bloch
periodic energy function to be,

W
(−→
k
)
= 2E0(cos kxa+ cos kya) (5.1)

where E0 is an empirical parameter, λ is the period of the lattice
potential and k is the wave vector. The momentum was then replaced
by the Peierls substitution as,

h̄k → h̄k− eA (5.2)

where e is the electron charge and A is the magnetic vector potential
with B = ∇ × A. By solving the time independent Schrödinger’s
equation, we get the wave function to be,

Ψ(x, y) = gne
iαm (5.3)

with x = nλ and y = mλ where m, n are integers and α depends on
the energy. The Harper’s equation is given by,

gn+1 + gn−1 + 2 cos (2πnΦ/Φ0 − α)gn = ϵgn (5.4)

where Φ = Bλ2 is the magnetic flux through the moiré unit cell, Φ0 =
h/e is the magnetic flux quantum and ϵ = 2E/E0 with energy E. At
rational fillings with Φ/Φ0 = p/q, where p and q are co-prime integers.
The solution of the Harper’s equation reveals that the Bloch band
would split into q distinct energy sub-bands, resulting in a recursive
fractal energy diagram as shown Figure 5.1(b), the so called Hofstadter
butterfly.

In 1978, G. Wannier included the density of states of the system
into the picture and transferred the fractal energy spectrum into a
linear diagram, the so-called Wannier diagram. In this representation,
Hofstadter’s butterfly is described by the Diophantine equation, given
by,

n/n0 = t(Φ/Φ0) + s (5.5)

where n is the carrier density and n0 is the carrier density of a unit cell.
The first quantum number t corresponds to the topological properties
of the Landau level flat band and the second quantum number s is
the Bloch band filling index. Later on, the fractal spectrum was also
calculated for triangular lattices [73] and honeycomb lattices [74].
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Fig. 5.1: Hofstadter spectrum and Wannier diagram. a Schematics of
moiré superlattice and electron’s motion in 2D under a perpendicular
magnetic field B. b Calculated Hofstadter spectrum in a unit cell. c
Wannier diagram produced from the Hofstadter spectrum.

Hofstadter spectrum in different systems

The minigaps in this fractal spectrum are considerable when the mag-
netic flux passing through the unit cell is comparable to the quantum
flux or, in other words, the magnetic length lB is comparable to the
λ, the period of the lattice potential. Earlier people had fabricated
lateral superlattices of 2D electron gas in GaAs/AlGaAs heterostruc-
tures to study this physics [75–77]. Although some signatures of the
Hofstadter spectrum were observed in this system, the sample degra-
dation due to nanofabrication and the difficulty of tuning the carrier
density continuously hindered the complete reveal of the fractal energy
spectrum.

The fractal Hofstadter spectrum was vividly realized in a microwave
waveguide with a periodic arrangement of scatterers [78]. In this pho-
tonic system, the transmission matrix mimics the Hamiltonian of Bloch
electrons in a magnetic field, and equivalently leads to the Harper equa-
tion and a fractal Hofstadter butterfly. Similar realizations of the Hofs-
tadter Hamiltonian were also reported in optical lattices with ultracold
atoms [79] and in superconducting qubits [80].

Being atomically thin, graphene provides an ideal platform to study
2D electronic phenomena. The first and the best experimental ob-
servation of the fractal phenomena was observed in a graphene/hBN
superlattice due to their lattice mismatch. The fractal Hofstadter spec-
trum was realized in transferred graphene/hBN superlattices [53, 81–
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Fig. 5.2: BM model with common energy (E) axis. (a) The single-
particle bands of the BM model for θ = 1.12◦ in zero flux. The nearly
flat bands at charge neutrality are black, the lowest four connected
passive bands are blue, and the sixth and higher bands are red. (b)
Normalized density of states (arbitrary units). (c) Integrated DoS or
filling n(E) as a function of the energy. The 50 meV hatching in the
bottom left corner is for visual ease of comparison with energies at
integer filling of the bands. The filling is reported without the spin-
valley degeneracy, so n = 1 corresponds to ν = 4.

85], in epitaxial graphene/hBN superlattices [86], and in ABC-trilayer
graphene/hBN superlattices [87].

Hofstadter spectrum in MATBG

Twisted bilayer graphene is an interesting and even more complicated
system to study the fractal phenomena as it not only determines the
period of the superlattice but also dictates the inter-layer coupling.
Nesr the magic angle (θ = 1.1◦), electronic bands are extremely flat
with a thickness of ∼ 10 meV with a strong correlation. The moiré
unit cell period for magic angle is (∼ 15 nm) such that one magnetic
flux quantum per moiré unit cell (Φ/Φ0 = 1) can be achieved around
B = 30 T.

Here, we discuss the single particle spectrum of twisted bilayer
graphene in a magnetic field computed using the Bistrizter-MacDonald
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model. For completeness, we include the zero-magnetic field spectrum
in Figure 5.2(a), where we highlight the two flat bands near zero energy
(black) and the four lowest passive bands above and below charge
neutrality (blue). Figure 5.2(b) and (c) show the density of states
(DoS) and filling n(E) respectively. We compare some features of
the low magnetic field resistance data to the zero flux band structure
which can be understood from a Landau level approximation of the
k · p spectrum. However in larger fields, a full Hofstadter calculation
is necessary to determine the spectrum and topology.

The band structure of the BM model in 2π magnetic flux per
unit cell was calculated in [88], where the authors developed a gauge-
invariant formalism to study the single-particle spectrum, topology,
and interacting states. By employing a judicious choice of basis states
that are eigenstates of both magnetic translation operators (which
commute at 2π flux), they were able to block-diagonalize the con-
tinuum Hamiltonian by momentum, allowing for calculations of band
structures and Wilson loops. The momentum basis states at flux
Φ = 2π read,

Ψk,m(r) =
1√
N(k)

∑
R1,R2∈Z

e−ik·RTR1
1 TR2

2 wm(r) (5.6)

with the commutation relations,

T1T2 = eiΦT2T1 and [T1, H] = [T2, H] = 0 (5.7)

Here k is momentum and r is position, wm(r) is the wavefunction
for the mth Landau level centered at the origin, and T1, T2 are the
magnetic translation operators. Notably, the magnetic translation op-
erators Ti commute at Φ = 2π. So just like at zero field the spectrum is
diagonalized into Bloch-like bands with density one electron per moiré
unit cell. The mth momentum basis states are in essence linear combi-
nations of themth Landau level translated by all lattice vectors R, and
appropriately normalized by N(k). When expressed in this basis, the
Bistritzer- MacDonald model in 2π flux becomes a relatively simple
Hamiltonian involving ratios of Jacobi theta functions. The Landau
level index m is chosen to range from 0 to nlandau, the Landau level
cutoff. Increasing nlandau improves the accuracy of the eigenvalues and
eigenvectors.

To treat twisted bilayer graphene at rational flux Φ = 2πp/q, where
p and q are co-prime integers, one may map the rational flux Hamilto-
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nian to a 2π flux Hamiltonian by a redefinition of the lattice vectors,
shrinking one lattice vector by a factor of p (at the cost of the Hamilto-
nian no longer being translation symmetric with respect to this smaller
lattice vector) and extending the other by a factor of q. This modified
unit cell encloses 2π flux, and so the results of [88] may be applied with
only minor modifications. It is important to note that the resulting
Hofstadter sub-bands have lower density. They have one electron per
q moiré unit cells.

Because the Hamiltonians are block-diagonalized by momentum,
they are relatively small in dimension, although the Hamiltonians are
dense. It is not numerically taxing to build a large Hofstadter spectrum
reaching as high as q = 40, with p ranging from 1 to q. Each Hamil-
tonian for a given momentum has dimension ≈ 4pnlandau × 4pnlandau,
where nlandau is the Landau level cutoff. Even for small nlandau, for
example 50, we find the gauge-invariant rational flux technique works
very well and is quite accurate for most values of Φ. It is only for high
q that the Hamiltonian loses accuracy, requiring an increase in nlandau

to compensate. The Hamiltonian is diagonalized over a mesh of points
in the magnetic Brillouin zone, yielding a Hofstadter spectrum. We
neglect the Zeeman splitting, which is less than 2 meV.

Gaps in the Hofstadter spectrum correspond to single particle insu-
lating states. Unlike 0 and 2π flux, at rational flux single-particle gaps
occur also at fractional fillings. To see this, note that at rational flux
Φ = 2πp/q, the magnetic translation operators T1, T2 do not commute
with one another. However, the operators,

[T1, T2
q] = 0 and [T1, H] = 0 and [T2

q, H] = 0 (5.8)

do commute, implying the Hamiltonian can be diagonalized in a
magnetic unit cell enlarged by a factor of q. Thus the magnetic Bril-
louin zone is reduced by a factor of q. At 0 and 2π flux, a filling of ν = 4
(4 for spin and valley degeneracy) implies that one band is completely
filled. At rational flux, a filling of ν = 4 fills q Hofstadter bands; this is
because the Brillouin zone is smaller, so a higher numbers of bands are
filled to have the same electron density. We searched the Hofstadter
spectrum for gaps greater than our chosen cutoff of 6 meV and selected
those that occurred at precisely an integer number of Hofstadter bands
away from charge neutrality.
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5.2 Magneto-transport behaviour at high

magnetic field

The moiré potential in MATBG gives rise to a set of renormalized flat
bands in the mini Brillouin zone. These flat bands possess C2z, C3z,
C2x rotational symmetries and time reversal symmetry (T ) at zero
magnetic field. At zero magnetic field, nontrivial band topology exists
due to the C2zT symmetry in the system. The specific symmetry and
topology of the bands plays a great role in understanding the differ-
ent emergent quantum phases in MATBG [89–91]. Hence, discovering
novel flat band systems with different inherent symmetries has been
a major goal in this field. As we discussed in the last section, at 2π
magnetic flux, MATBG possess a set of new flat bands with different
band topology and symmetry. In this section we will discuss the ob-
servation of flat band and related phenomena in detail at 2π magnetic
flux.

5.2.1 Re-entrant correlated insulator at 2π mag-
netic flux

We measured the magneto transport behaviour of a magic angle device
with a twist angle θ = 1.12◦± 0.02◦ at a magnetic field as high as B =
31 T. The magnetic field (B0) required to reach the full flux condition
is given by,

B0 =
h

e
× 1

A
(5.9)

where A is the unit cell area of the moiré superlattice, h is the Planck’s
constant and e is the electronic charge. For our device with the twist
angle, θ = 1.12◦, the corresponding B0 is 30.5 T. We studied the full
Hofstadter spectrum from zero filed to B0 in order to resolve the evo-
lution of the flat band at different integer flux. At B0 we observed
re-entrant correlated insulators at certain integer fillings which are al-
most similar to the zero field correlated insulator. In this section we
will discuss the characteristics of the re-entrant insulators in the pres-
ence of magnetic field and temperature.

Figure 5.3(a) represents the four terminal longitudinal resistance
Rxx as a function of magnetic field B and filling factor ν. The carrier
density n of the flat band is continuously tuned by the gate voltage
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Vg applied to the graphite gate. Total carrier density of the band n is
normalized by nS = 4n0, where nS is the density of the fully filled spin
and valley degenerate moiré bands and n0 is the density per flavour.
In this picture, the filling factor of the band ν is given by ν = n/n0.

In the ν − B phase space, dark red regions correspond to highly
resistive states and dark blue regions correspond to low or zero resistive
states. It demonstrates the continuous evolution of different states in
the presence of the magnetic field. At zero magnetic field, the flat
band hosts several correlated insulators (CI) at the integer fillings of
ν = +2,+3,−2 and band insulators (BI) at ν = ±4 as observed in
other studies as well. Another dark red region at ν = 0 corresponds to
the charge neutrality point (CNP) of the flat band.

As we keep increasing the magnetic field, all the correlated insula-
tors start to become weaker and finally around B ∼ 8 T, all of them
completely disappear. This trend of the correlated insulators has been
observed in multiple studies before. As we apply much higher mag-
netic field, the phase space is mostly dominated by the Landau levels
emerging from different integer fillings, which we will discuss later.
Strikingly, above B = 24 T, the CIs at ν = +2,+3 reappear and
grow continuously stronger until B = 31 T (Φ0). While we could not
measure the device at a B field well above Φ0, due to experimental
limitations, by continuity, all the CIs remain symmetric with respect
to Φ0 and behave similarly below Φ0. Hence, in this study we will
always discuss the phase space below Φ0.

In this colour plot, Rxx contains more noise than low magnetic field
phase space data. It happens due to the unstable device contacts at
high magnetic field. The instability arises due to several factors at
high magnetic field, such as,

1. In our final device structure, only the effective device channel is
gated by the local graphite gate. However, there are some parts
of the device which connect to the metal electrodes that are out
of the graphite gate. The resistance of these parts contributes
to the contact resistance of the device. In general the contact
resistance (Rc ∼ 10kΩ) of the twisted bilayer graphene devices is
an order of magnitude higher than normal graphene devices due
to the flat band formation. With increasing magnetic field, the
contact resistance increases due to the increase of CNP resistance
of twisted bilayer graphene. For some devices, we have observed a
contact resistance of∼ 10MΩ at a magnetic field above B = 15T.
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Fig. 5.3: Longitudinal resistance of the device at high magnetic field.
(a) Color plot of the Rxx as a function of magnetic field B and carrier
density ν. CI represents the correlated insulators and BI corresponds
to the band insulators, CNP defines the position of the charge neu-
trality point. (b) Line plot of Rxx inside the flat band at B = 0 T and
B = 30 T showing the high resistance peaks of correlated insulators
at ν = +2.
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In this situation, it becomes almost impossible to bias the device
with constant current.

To improve the contact resistance we have always applied a con-
stant global silicon gate voltage in our devices for all the mea-
surements at high magnetic field. The application of the global
gate voltage brings the contact resistance far away from the CNP
into the metallic region. The resistance of these parts generally
does not increase with increasing magnetic field, thus making it
more stable.

2. Another source of noise is the mechanical vibration at high mag-
netic field which incorporates electrical noise in our measured
data. When we are operating above B = 15 T, the current pass-
ing through each coil of the magnet is of the order of tens of
Mega Ampere (106− 107 A) which also produces a lot of heating
effect in the circuit. Although there are powerful water cooling
systems, it is almost impossible to avoid the mechanical vibra-
tion while working at high magnetic field. Hence, we could not
completely get rid of the electrical noise in our measurement.

Figure 5.3(b) represents the line plot of Rxx as a function of ν at
B = 0 T and B = 30 T (full flux) at T = 40 mK. The B = 0 T
trace is dominated by a well-known sequence of resistance peaks [26,
92]. The charge neutrality point (CNP) appears to be a gapless phase
since Rxx is of the order of 10kΩ. We observed correlated insulators
(CI) at ν = ±2,+3 and band insulators (BI) at ν = ±4. We have
also observed a superconducting region (SC) near ν = −2. In the
B = 30 T trace, we observe an overall similar picture, which strikingly
shows enhanced resistance peaks at ν = +2 + 3 : a first indication of
re-entrant CIs. We will discuss the temperature dependence of these
states in the later section. Nevertheless, some differences emerge. The
CNP is now gapped with a resistance in the order of Rxx ∼ 10 MΩ,
and the gaps of the BIs at ν = ±4 are enhanced. We also do not
find signatures of superconductivity. We argue that the experimental
parameters to observe SC are much more stringent than those for the
observation of the CIs.
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Fig. 5.4: Magnetic field dependence of the correlated insulators. (a)
Color plot of the Rxx as a function of magnetic field B (upto B =
10 T) and carrier density ν. (b) Color plot of Rxx as a function of
magnetic field B (from B = 30 T to 22 T) and carrier density ν close
to full flux. (c) Evolution of the CI with magnetic field ranging from
B = 0 T to 10 T. (d) Evolution of the ν = +2 state with magnetic
field near Φ0. Rxx is plotted in logarithmic scale.

5.2.2 Magnetic field dependence of the correlated
insulator

In this section, we will discuss the effect of perpendicular magnetic field
on correlated insulators. As mentioned earlier, perpendicular magnetic
field suppresses the resistance of the correlated insulator. As shown
in Figure 5.4(a), the correlated insulator at ν = +2 CI is completely
suppressed by a perpendicular magnetic field of B = 8 T. Figure 5.4(c)
represents the line plot of Rxx as a function of B at ν = +2 from B
= 0 T to B = 10 T. The graph clearly describes that the CI is the
strongest at zero field and it decreases almost linearly with increasing
magnetic field. Finally, at B ∼ 8 T, the resistance jumps from 75 kΩ
to 5 kΩ and ν = +2 state becomes a metallic state.

We observed qualitatively similar feature at the same filling, close
to the full magnetic flux. Figure 5.4(b) is the colour plot of Rxx close
to ν = +2 and Φ = 2π from B = 22 T to 30 T. The highly resistive
state visibly fades upon lowering the magnetic field away from the
flux quantum Φ0 = 31 T. Rxx has a maximum value at B = 31 T,

100



decreases with magnetic field, and finally obtains high conductance at
B = 26 T as shown in Figure 5.4(d). This same qualitative trend of the
correlated insulator at ν = +2 for both zero flux and Φ0 suggests the
two correlated insulators possess a similar origin. Due to experimental
limitations, we could not apply an external magnetic field higher than
Φ0 or B = 31 T. Hence we have compared it with the CIs at lower
magnetic field.

5.2.3 Temperature dependence of the correlated
insulators

In the previous section, we have only discussed the magnetic field de-
pendence of the ν = +2 state and qualitatively assigned the state to be
a correlated insulator. However, one of the most important feature of
the correlated insulator is the temperature dependence. The tempera-
ture activated gaps of the correlated insulators at zero magnetic field
are generally much smaller than the band insulating gaps. We have
also measured the temperature dependence of Rxx at high magnetic
field close to Φ0.

Figure 5.5 summarises the temperature activation of different states
inside the flat band, mainly the insulating states at ν = +2 and +3
at B = 28 T. We plotted longitudinal resistance Rxx on a logarithmic
scale as a function of filling factor ν for eight different temperatures
(T = 1.5 K, 3 K, 4 K, 5 K, 7.5 K, 10 K, 12.5 K and 15 K) in Figure
5.5(a).

The resistance (10 kΩ) of the device is much higher than the zero-
field resistance, even in the metallic region of the flat band. This
happens due to the higher contact resistance and the non-ideal 4 probe
configuration of the device at high magnetic field. The resistance of
the CNP is ∼ 106 kΩ, indicating a gap opening. Apart from that, the
resistance of the ν = +2 state increases by one order of magnitude and
the resistance of the ν = +3 state becomes double by decreasing the
temperature from T = 15 K to 1.5 K.

In order to calculate the size of these temperature activated gaps,
we plotted the conductance (Gxx) in logarithmic scale as a function
of 1/T for B = 28 T. The turquoise line plot is the temperature ac-
tivation of ν = +2 state and the neon pink is for ν = +3 state. By
doing Arrhenius fitting on this curve, we calculated that the gaps are
∆ = 0.85 meV and ∆ = 0.17 meV for ν = +2 and ν = +3 states,
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Fig. 5.5: Temperature dependence of the correlated insulators at B
= 28 T. (a) Rxx as a function of ν in logarithmic scale at several
temperatures from T = 1.5 K to 15 K. ν = +2 and +3 states are
marked with dotted turquoise and neon pink lines respectively. (b)
Conductance Gxx as a function of 1/T for ν = +2 and +3 states.

respectively.

5.2.4 Degeneracy of the flat band at one magnetic
flux

Theoretically, it has been predicted that the flat band at one magnetic
flux of the unit cell has different band symmetries and topology. At
zero magnetic field, the band has four fold symmetry (spin and valley)
at the CNP. However, this degeneracy is lifted at the half filling of the
band due to the correlation. This results in a Chern insulator with
Chern number C = 2 from the integer filling ν = ±2. This scenario
might differ as we increase the magnetic field and reach one magnetic
flux per moiré unit cell.

In this section, we will discuss the emergence of the Chern insulator
from the re-entrant correlated insulator at full flux. Figure 5.6(a)
represents the colour plot of Rxx as a function of the magnetic field
(B) from zero field to full magnetic flux and around the half filling
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Fig. 5.6: Evolution of the LL from the flat bands at both zero flux
and one magnetic flux. (a) Colour plot of Rxx as a function of ν and
B measured around ν = 2 at 40 mK. (b) and (c) Rxx and Rxy as a
function of ν at B = 22 T and B = 5 T respectively, showing the full
quantization for the νLL = +2 LL gap.

of the flat band. At zero magnetic field we observed a set of Landau
levels with filling factors νL = +2, +4 emerging from the CI at ν
= 2. In previous studies, including ours, the LL with νL has been
recognized as correlated Chern insulator with the Chern number C =
2. We have plotted both longitudinal resistance (Rxx) and transverse
resistance (Rxy) close to ν = 2 at B = 5 T in Figure 5.6(c) to show the
quantization of this state. This shows clear quantum Hall signatures
of νL = +2 with Rxx ∼ 0 Ω and Rxy ∼ 12.5 kΩ. We have used
the magnetic field symmetrization technique of resistance to get the
perfectly quantized states.

The nano-fabrication process always incorporates some misalign-
ment in the Hall bar geometry of the MATBG devices. At a very high
magnetic field this misalignment of the probes becomes a dominating
factor and incorporates cross contribution to the longitudinal (Rxx)
and Hall (Rxy) resistances. This prevents us from getting a perfectly
isolated Rxx and Rxy measurement.

The magnetic field symmetrization technique was used to extract
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these values with quantitative precision. Due to the magnetic field
symmetrization property, the longitudinal resistances (Rxx) are sym-
metric under time reversal and are the same in positive or negative
magnetic field, whereas the Hall resistances (Rxy) are anti-symmetric
and change sign for positive versus negative magnetic field.

In order to get the exact value of these resistances, we measured
the device in both the positive and negative polarities of the magnetic
field (+B and −B) and calculated Rxx and Rxy using these formulae:

Rxx(B) = [Rmeas(+B) +Rmeas(−B)]/2 (5.10)

Rxy(B) = [Rmeas(+B)−Rmeas(−B)]/2 (5.11)

Due to experimental difficulties, we could not measure the device
in the negative polarity of magnetic field for the full B space up to B
= -31 T. However, we were able to perform measurements for certain
values of magnetic field. In Figure 5.6(b) and (c), the Hall resistance
Rxy was anti-symmetrized in order to get perfect quantization at νL =
+2.

The CI is continuously suppressed with increasing B and vanishes
at B ∼ 8 T, where the phase diagram is dominated by LLs. Strikingly,
above B = 24 T the ν = +2 CI state reappears and grows continuously
stronger up to Φ0 as shown in Figure 5.6(a). As mentioned above,
we could not measure our device in B fields well above Φ0 due to
experimental limitations. However, by continuity, all the LLs that
point away from the CNP above B0, will point toward the CNP below
B0. Similar to zero flux, we also observed the emergence of a set of LLs
from the ν = +2 CI. The LLs with even fillings are more pronounced
than the odd fillings. Rxx and Rxy are plotted as a function of ν at B
= 22 T, showing perfect quantization in Figure 5.6(c). Since the most
dominant LL here is the νL = +2, we also interpret this LL to be the
correlated Chern insulator with C = 2, in direct analogy to the B = 0
T case.

5.3 Fermi Surface reconstruction at dif-

ferent integer fillings

In the presence of a superlattice electrostatic potential and perpendic-
ular magnetic field, the two dimensional electron gas (2DEG) gives rise
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to a self-similar recursive energy spectrum. In the case of graphene/hBN
superlattices, this recursive fractal energy spectrum was observed within
an accessible range of magnetic field (B = 35 T). Magic angle twisted
bilayer graphene exhibits a similar type of behaviour at B = 31 T,
where one magnetic flux quantum (Φ0) passes through the moiré unit
cell of the superlattice. We have discussed this in the previous section
with clear re-entrant features of the correlated insulators. In this sec-
tion we will present few evidence of the Fermi surface reconstruction
at different integer filling of the flat band at 2π magnetic flux, which
reconfirms the correlation driven band gap opening at those fillings.

In a metallic system, the Fermi surface is a surface in the reciprocal
space which separates the occupied electronic states from the unoccu-
pied states. The shape of the Fermi surface depends on the symmetry
of the given lattice. Inside an insulator or a semiconductor, the Fermi
level exists within the band gap and the Fermi surface does not exist
in this scenario. Hence, in twisted bilayer graphene, the Fermi surface
is reconstructed as we cross the mini band gap inside the flat band.

In transport measurements, the electronic Fermi surfaces have been
measured by the quantum oscillation under an external magnetic field.
This quantum oscillation is called Shubnikov-de Haas (SdH) oscillation
and arises due to the Landau quantization. In this section, we will
describe the reconstruction of the Fermi surface at high magnetic field,
as it passes through different correlation induced mini band gaps.

5.3.1 New set of Landau levels originating from
different integer fillings

Previously, we have discussed the re-entrance of the correlated insula-
tors at one magnetic flux quantum per moiré unit cell at integer fillings
ν = +2 and +3 from the absolute resistance measurements and their
temperature dependence. Here we will examine the full ν − B phase
space of the flat band to describe the emergence of new set of LLs from
different fillings of the flat band.

Figure 5.7(a) and 5.7(b) represent the full Landau fan diagrams
of Rxx and Rxy as a function of ν and B for the entire magnetic field
range (B = 0 T to 31 T). From different integer fillings, we observed
a new set of LLs with different degeneracies. The schematics of these
LLs have been laid out in Figure 5.7(c).

At zero flux, a set of fully non-degenerate LLs emerge from the
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Fig. 5.7: Full phase space of the flat band. (a) and (b) show, respec-
tively, the color plots of Rxx and Rxy as a function of B and ν, for the
full magnetic phase space from B = 0 T to B = 31 T and ν from -4
to +4. (c) Schematics of all the LLs emerging from different fillings of
the band from both zero flux and Φ0. Light blue lines from the CNP
indicate the LLs with νL = ±1, ±2, ±3, ±4, and ±5. Dark blue lines
indicate the LLs from ν = ±1 at both zero flux and Φ0. Dark red
lines correspond to LLs from ν = ±2 at both zero flux and Φ0. Or-
ange lines indicate the LLs that emerge from ν = ±3 and purple lines
correspond to LLs from ν = −4. Solid lines mark well pronounced,
quantized LLs, while dashed lines mark weaker, non-quantized levels.
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CNP with the filling factors νL = ±1, ±2, ±3, ±4 and ±5 which are
schematically shown in light blue lines in Figure 5.7(c). However, from
the half filling (ν = ±2), we only observed the LLs with degeneracy
2, illustrated in red lines. Interestingly, we have observed only oddly
degenerate LLs originating from the odd integer fillings of the flat
band. Quarter integer filling (ν = ±1) of the band gives rise to the LLs
with filling factors νL = ±3, as shown in dark blue colours. Likewise,
another set of LLs with filling factors νL = ±1 emerge from the 3/4th
band filling (ν = ±3), which are drawn as orange lines in the schematics
[34, 47, 68, 93].

At the full magnetic flux (Φ/Φ0 = 1), we observed a completely
new set of LLs emerging from the different integer fillings of the re-
entrant flat band. This observation demonstrates the reconstruction
of the Fermi surfaces at those fillings, ν. Surprisingly, all the Fermi
surfaces from all the integer fillings have a fully lifted degeneracy. As
shown in Figure 5.7(c), we found the LLs with filling factors νL =
+1,+2,+3 arising from the integer filling ν = +1. This filling at full
flux is completely different from the zero field case and has a fully lifted
degenerate mini band. ν = ±2 filling of the band gives rise to the LLs
with the filling factors νL = ±2, ±3, ±4 and ±5. Finally, another
set of LLs with the sequence νL = ±1, ±2, ±3 and ±4 originated
from the filling ν = ±3. All these levels are schematically drawn with
corresponding colours.

This suggests that for both odd and even integers the spin and
valley degeneracies have been lifted at Φ0 in contrast to zero flux.
This can be explained by the breaking of C2zT symmetry by magnetic
flux, which lifts the degeneracy of the quasiparticles on top of the CIs,
although quantitative predictions have not been made so far at odd
fillings [94, 95].

Furthermore, we also observed LLs which survive through the full
range of magnetic field and connect two different integer fillings at
zero flux and at Φ0. Whereas [88] uses a strong coupling approach to
analyze the ground states at Φ0, more theoretical work is required to
study the interactions within the Hofstadter sub-bands at intermediate
flux.

The strong interaction at zero flux spontaneously breaks the C2zT
symmetry and can give rise to several Chern bands at different odd
integer fillings. At Φ0, the C2zT symmetry is broken by the magnetic
field, leading to different single-particle topology in the flat bands and
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different degeneracies in the many-body charge excitations atop the CI
states. The observed differences in the B = 0 T and B = 30.5 T LLs
reflect the importance of symmetry and topology in determining the
many-body phases. The observation of these LLs and the interaction-
driven CIs confirms the existence of the (theoretically predicted) flat
bands at Φ0.

5.4 Comparison between the flat bands

at high field and at zero field

The flat band in magic angle twisted bilayer graphene at zero field
hosts multiple correlated phenomena which have been observed in sev-
eral studies before. Our study confirms the existence of another flat
band at one magnetic flux quantum, with several qualitative similari-
ties. Nevertheless, some differences emerge between the two flat band
systems.

Figure 5.3 clearly represents that the zero magnetic field flat band
possess a strong superconducting dome at half filling of the band. How-
ever, the high magnetic field flat band did not show any superconduc-
tor despite having several correlated insulating states. Another stark
difference is the size of the correlated insulators at the two different
magnetic fields. We will discuss these differences in detail in this sec-
tion.

5.4.1 Differences between the superconductors

We have observed a strong superconducting dome close to half-filling
of the flat bands at zero magnetic field in the hole side. Figure 5.8(a)
shows the longitudinal resistance Rxx as a function of temperature
T and filling ν. The dark red region at ν = -2 confirms the well
known correlated insulating state at half filling. When the band is
slightly doped away from this insulating state, Rxx vanishes. The dark
blue region (ν = -2.1 to -2.32) in Figure 5.8(a) corresponds to the SC
dome. The typical temperature dependence of the resistance (Rxx)
at the optimal doping of the SC dome (ν = - 2.26) shows a clear
transition to a zero resistance state. In Figure 5.8(b) we calculated
the transition temperature to be Tc = 2 K. Figure 5.8(c) shows the
typical d.c. IV measurement of the superconductor. It has a very high
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critical current, Ic = 400 nA, at the base temperature of our fridge (T
= 40 mK) indicating the high quality of the device.

We also discuss the possibility of re-entrant superconductivity at Φ0

flux, which we have not observed in this study even though the device
possesses a superconducting region on the hole doped side of the ν = -2
CI at B = 0 T. While the exact nature of superconductivity in MATBG
is still not clear, it is established that the ultra-high density of states in
the flat bands is a key ingredient for its occurrence, and some theories
tie it directly to the CI states. In direct analogy to the re-entrant

Fig. 5.8: Superconductivity at zero field. (a) Temperature depen-
dence of Rxx as a function of ν for the hole side of the flat band. The
dark red regions at ν = 0, -2, -4 correspond to the charge neutrality
point, a correlated insulator, and a band insulator, respectively. The
dark blue region left of ν = -2 shows the superconducting dome. (b)
Rxx as a function of T for the optimal doping of the SC at ν = -
2.26, yielding a critical temperature Tc = 2 K. (c) DC current versus
voltage plots for the SC at different temperatures from T = 35 mK to
8 K.
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behavior of the CI, it is possible that the flat bands in full flux could
host re-entrant SC phases. However, the experimental parameters for
its observation might be much more rigid than for the CIs. As the
critical B-field of the SC is only about Bc ∼ 50 mT, it is several
orders of magnitude smaller than that for the CIs, and achieving such
measurement accuracy at such high fields is challenging. Such a small
field can also be easily smeared out by twist-angle disorder, where at
full flux a tiny twist angle inhomogeneity of △θ = 0.05◦ will give rise
to a variation of the full flux value by △B = 60 mT, which is enough to
fully suppress a SC state. We hence propose the continued exploration
of re-entrant SC in MATBG with ultra-homogeneous devices.

5.4.2 Differences between the correlated insula-
tors

At zero magnetic field, we have clearly observed correlated insulators
at ν = ±2, +3. We have characterized the temperature dependence of
these states and calculated the activation gap from Arrhenius fitting.
Figure 5.9(a) shows the conductance (Gxx) of the ν = +2, +3 and -2
states, as a function of 1/T at zero magnetic field.

From the Arrhenius fitting, we calculated their gaps to be △ = 0.22
meV (ν = +2), 0.09 meV (ν = +3) and 0.21 meV (ν = -2) respectively.
We have also observed correlated insulating states at B = 28 T. Figure
5.9(b) shows Gxx as a function of 1/T at 28 T for ν = +2 and ν =
+3 states. Similarly, we calculated the thermal activation gap of these
states to be △ = 0.85 meV (ν = +2) and 0.17 meV (ν = +3).

Therefore, the temperature activated gap of the integer filling ν =
+2 is almost 4 times higher at the full flux than the zero field case.
Similarly, the ν = +3 correlated insulating gap at full magnetic flux is
also three times higher than the gap at zero field. Qualitatively, we can
expect to have stronger correlation in the flat band at high magnetic
field than the zero field flat band.

In summary, we discussed the observation of interaction-driven cor-
related insulating phases at one flux quantum per moiré unit cell in
MATBG. Our experimental observations largely agree with our single-
particle Hofstadter calculations, which predict the emergence of a set
of electronic flat bands at full flux with different symmetry and topol-
ogy than the zero-field flat bands. These bands are unstable to the
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Fig. 5.9: Temperature dependence of the CIs. (a) Conductance
(Gxx) as a function of 1/T for the correlated insulating states at ν
= +2 (blue), +3 (wine red), and -2 (orange) at zero magnetic field.
From the Arrhenius fit, the extracted temperature activated gaps are
△ = 0.22 meV, 0.09 meV and 0.21 meV, respectively. (b) Gxx as a
function of 1/T for the insulating states at ν = +2 (blue) and v = +3
(wine red), at B = 28 T. Calculated thermal activation gaps of these
states are △ = 0.85 meV and 0.17 meV respectively. Dotted lines are
the Arrhenius fitting of the line plots.

creation of correlated states by interactions.
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Chapter 6

Higher Energy Dispersive
Bands in Magic-angle
Twisted Bilayer Graphene

The band structure calculation of magic angle twisted bilayer graphene
(MATBG) comprises two connected nearly flat topological bands and
a set of higher energy dispersive bands. The higher energy dispersive
bands are separated from the flat bands by an energy gap of 50 meV.
Different imaging techniques such as, low-energy electron microscopy
(LEEM), scanning tunnelling microscopy (STM) and angle resolved
photo-emission spectroscopy (ARPES) etc. can directly map the band
dispersion of MATBG [96–99]. However, electronic transport measure-
ments have not been able to verify the band structure so far.

In this chapter, we will discuss the effect of magnetic field on the
higher energy dispersive bands of MATBG. These two lowest-lying
higher energy dispersive bands can be modelled with a Rashba-like
Hamiltonian. These two Rashba like dispersive bands give rise to two
sets of Landau levels (LLs) while subjected to a magnetic field. In
the first section of this chapter, we will discuss the LL crossings of
these bands upto a magnetic field of B = 8 T. From the evolution
of the Landau levels in the dispersive bands, we can show that our
experimental results enable a parameter-free comparison to a newly
derived magic series of level crossings in a magnetic field and provide
constraints on the parameters of the Bistritzer–MacDonald MATBG
Hamiltonian.

Later, we will discuss the effect of high magnetic field on these
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dispersive bands and the single particle Hofstadter spectrum of the
Rashba like bands.

6.1 Higher energy dispersive bands

In MATBG, the low energy continuummodel of the Bistritzer-MacDonald
Hamiltonian consists of three terms, two single layer Dirac Hamilto-
nian terms that describe the isolated graphene sheets and a tunneling
term that describes the hopping between two layers [61]. The solu-
tion of this Hamiltonian including the corrugation terms gives rise to
fourfold degenerate higher-energy bands that can be modelled with a
Rashba-like Hamiltonian. Effectively, a two-band model to order O(k2)
can transit from a Dirac point into quadratic free electron bands. In
this section we will first discuss the higher energy band structure of
MATBG by a Rashba Hamiltonian. After that we will derive the Lan-
dau levels emerging from these Rashba bands and the level crossings
between them.

6.1.1 Dispersive bands of MATBG

The solution of the single particle continuum model of the Bistritzer-
MacDonald Hamiltonian gives rise to a flat band with a width of ∼
10 meV. In Figure 6.1, we have shown the band structure of a magic
angle twisted bilayer graphene system with a relative twist angle of θ
= 1.12◦ ±0.02◦ between the two layers of graphene. In the low energy
limit, the band structure consists of a set of topologically non-trivial
fourfold degenerate flat bands. These flat bands are isolated from the
next dispersive bands by an energy gap of ∼ 50 meV. We have plotted
the lower energy bands in Figure 6.1(a) in the E−k diagram of the first
Brillouin zone. The purple flat bands are separated from the light red
dispersive bands. The dispersive bands are electron-hole symmetric.
Figure 6.1(b) and Figure 6.1(c) represent the focused top and bottom
part of the conduction and valence dispersive bands respectively. At
the Γ point two dispersive bands touch each other almost linearly (upto
an approximation) which is called the Dirac point, as shown by the blue
points in Figure 6.1(b) and Figure 6.1(c).

The Rashba effect, also called Bychkov-Rashba effect, is a momen-
tum dependent splitting of spin bands in bulk crystals and low dimen-
sional condensed matter systems. This has been observed in different
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Fig. 6.1: Band structure of MATBG with a twist angle θ = 1.12◦.
(a) Band structure at lower energy level upto E = 200 meV, with
flat bands in purple colour and dispersive bands in light red colour in
the first BZ. (b) Zoomed-in plot of the conduction dispersive bands
showing the Rashba splitting with the Dirac point at Γ point. (c)
Zoomed-in plot of the valence dispersive bands showing the Rashba
splitting with the Dirac point at Γ point.

two dimensional heterostructures and surface states. This effect is
similar to the splitting of particle and antiparticle bands in the Dirac
Hamiltonian. The splitting is a combined effect of spin-orbit inter-
action and the asymmetry of the crystal potential, in particular, in
the direction perpendicular to the two dimensional plane as applied to
surfaces and heterostructures.

People have used the spin orbit coupling in different systems to have
Rashba bands. One of its main uses is in the spintronics field. Rashba
spin-orbit coupling enables electric control of spin states, promising
enormous advances from conventional charge-based computing. Differ-
ent 2D van der Waals hetero-bilayer systems are the potential candi-
dates for this study [100, 101]. The strong spin-orbit coupling (SOC) in
perovskite materials induces interesting electronic characteristics, such
as Rashba band splitting due to the presence of heavy atoms [102]. The
Rashba-type spin-orbit coupling in systems with inversion symmetry
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breaking is particularly attractive for spintronics applications since it
allows flexible manipulation of spin current by external electric fields
[103].

In all the above mentioned systems spin-orbit coupling leads to the
Rashba splitting of the electronic bands. However, spin-orbit coupling
is almost negligible in graphene due to the light weight carbon atoms.
The origin of the splitting comes from the asymmetric crystal terms.
Although the origin of these two dispersive bands is different than the
SOC, for quantitative analysis, we will model the two passive bands in
the BM Hamiltonian with a two band Rashba-like model. In the next
section, we will derive the Landau levels of these Rashba like bands
and the level crossings between them.

6.2 Landau levels in the Rashba-like dis-

persive bands

In the two band Rashba-like model the Hamiltonian is given by,

H =
k2x + k2y
2m

σ0 + λ(kxσ1 + kyσ2) (6.1)

This describes the low energy theory of a Dirac node with a velocity
term λ which interpolates the free electron dispersion with effective
mass m. We have set h̄ = 1 here. Later, we will discuss a pertur-
bative derivation of the Rashba term from the BM Hamiltonian. We
will canonically couple this model with a magnetic field and set the
momentum terms as,

kx → px ≡ −i∂x + Ax and ky → py ≡ −i∂y + Ay (6.2)

In this picture the canonical equation for the momentum is given by,

[px, py] = −i(∂xAy − ∂yAx) = −iB (6.3)

The raising and lowering terms are defined as,

a† =
1√
2B

(px − ipy) and a =
1√
2B

(px + ipy) (6.4)

with the conditions,

[a, a†] = 1 and a†a =
k2x + k2y −B

2B
(6.5)
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In this picture, the vacuum state (|0⟩) is given by, |0⟩ = 0. Hence, we
can rewrite the Hamiltonian as,

H =

(
B
2m

(2a†a+ 1) λ
√
2Ba

λ
√
2Ba† B

2m
(2a†a+ 1)

)
(6.6)

In this Hilbert space, the Fock states can be written with respect to
the raising and lowering operators as,

a|l + 1⟩ =
√

(l + 1)|l⟩ and a†|l⟩ =
√

(l + 1)|l + 1⟩ (6.7)

The Landau level spectrum is derived by applying H on these Fock
states,

H

(
|l − 1⟩
|l⟩

)
=

(
B
2m

(2(l − 1) + 1) λ
√
2Bl

λ
√
2Bl B

2m
(2l + 1)

)(
|l − 1⟩
|l⟩

)
, l ≥ 1

(6.8)
By diagonalizing the representations of the Hamiltonian on the Fock
states, we find the Landau levels given by,

E+,l(B) =
1

m

(
lB +

√
B2

4
+ ξBl

)
, l = 0, 1, ...

E−,l(B) =
1

m

(
lB −

√
B2

4
+ ξBl

)
, l = 1, 2, ...

(6.9)

where, ξ = 2m2λ2 is the coupling parameter.
We now discuss the degeneracy of each Landau level. In a finite

sample of area A = NΩ, where N is the number of moiré unit cells,
each with area Ω, semi-classical quantization gives the total number
of states N = BA/2π = ΦN/2π where, Φ = BΩ is the flux through a
single moiré unit cell.

We will find it useful to choose units where Ω = 1, so that B = Φ.
Then the density of states per unit cell is n = Φ/2π. If C Landau
levels are filled, then each of the C levels contributes to the density of
states and we recover the Streda formula n = CΦ/2π, consistent with
the fact that each Landau band carries a Chern number C = 1. If we
plot the longitudinal resistance (Rxx) as a function of Φ and carrier
density n, the Streda formula allows the gaps with the Chern number
C to appear as the distinctive linear features. This is called the Landau
fan diagram. In the case of a free particle with λ = 0, gaps of all the
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Fig. 6.2: Schematics of LL crossings. We illustrate how a level cross-
ing in the Landau level spectrum affects the Landau fan. (a) We show
two Landau levels each carrying Chern number C = 1 intersecting at
a critical magnetic field B∗. For generic B, there will be gaps with
Chern number C − 1, C, and C + 1. At exactly B∗, there are only
C + 1 and C − 1 gaps because the C gap closes. (b) The Landau fan
shows how the gaps of Chern number C change their carrier density n
as the magnetic field is varied. The Streda formula guarantees linear
trajectories with slope 1/C for a gap of Chern number C. However,
at B∗, where the gap closes, we expect a break in the trajectory where
the bulk conductivity is high. Under experimental conditions, this gap
will be broadened into a finite region.

Chern numbers appear at every flux and never close (for small field
below the Hofstadter regime). Hence, the lines in the Landau fan are
never broken. We will now see that when λ is nonzero, these gaps close
at different critical values of the magnetic field. At these points of gap
closing, we expect to see low resistance peaks interrupting the lines of
the Landau fan observed in the experiment, as shown in Figure 6.2.

In order to discuss the band crossings, we will make another scaling
and consider B = ξb where b is a dimensionless field strength. Then
we can rewrite the Landau levels as arising from two branches,

E±,l(b) =
ξ

m

(
bl ±

√
b2

4
+ bl

)
, l =

{
0, 1, ..., for+

1, ..., for−
(6.10)

with all the parameters factored into the overall energy scale. As such,
the critical b values where the Landau levels intersect are independent
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of all the parameters of the Hamiltonian. The Landau levels and their
level crossings are shown in Figure 6.4. In this case only three types
of crossings can occur:

1. Intersections of the E+,l(b) and E−,l ′(b) levels for l ′ ≥ l + 2.
These crossings are denoted by b+(l, l

′).

2. Intersections of the E−,l(b) and E−,l ′(b) levels for l ′ ≥ l + 2.
These crossings are denoted by b−(l, l

′).

3. Intersections of the E−,l(b) and E0(b). These crossings occur at

b±(l, l
′) =

1

l + l ′ ∓
√
4ll ′ + 1

with

{
l ′ ≥ l + 2, +

l ′ ̸= l, −
(6.11)

This equation expresses the crossings in terms of the Landau level
index. Using this expression, we will now determine the succession of
level crossings which interrupt gaps of the Chern number C, as ob-
served experimentally and discussed later. In the large b limit, Landau
levels are given by,

E±,l(b) =
ξ

m
(b(l ± 1/2)± l +O(1/b)) (6.12)

From this energy spectrum, we can easily deduce that,

E+,l(b)− E−,l+1(b) = 2l + 1 +O(1/b) (6.13)

With respect to the energy of these levels we can order them as,

E−,1 < E+,0 < E−,2 < E+,1 < E−,3 < E+,2 < ..... (6.14)

These levels are organised into parallel levels, E+,l and E−,l+1.
These parallel levels are gapped from each other and have the same
slope to the leading order of b. We can organize the large b spectrum
into two kinds of gaps, those between the parallel levels E+,l and E−,l+1

(hence having an odd number of Landau levels below), and those sepa-
rating neighboring pairs of parallel levels (hence having an even number
of Landau levels below). Recall that b = B/ξ is dimensionless, so the
physical meaning of large b depends on the Rashba coupling. As we
will show shortly, the critical value of b for which the largest b gap of
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Fig. 6.3: Structure of gap closings. (a) The local structure of the
next (smaller b) Chern number C gap closing, shown in orange, after
the level crossing of E−,l and E+,l+1, shown in red. (b) The local
structure of the series of Chern number C gap closings that occur
below E = 0. Note that the crossing are all between levels in the
negative branch.

the Chern number C closes depends on C. For C = 4, Figure 6.4 gives
b ∼ 2.5 (we will shortly give an exact expression).

We now want to determine where these gaps first close as b is de-
creased from infinity. We first consider the even Chern number gaps
of C = 2l+1, l = 0, 1, .. between E+,l(b) and E−,l+2(b). The two levels
E+,l(b) and E−,l+2(b) are not parallel and the gap closes when they in-
tersect at b+(l, l+2). Rewriting this crossing in terms of l = (C−2)/2,
we find that the initial gap closing (indexed from zero) for C = 2, 4, 6, ...
is given by,

bC,0 =
1

C −
√
C2 − 3

for C ≥ 2, even (6.15)

We now consider the odd Chern number gaps of C = 2l + 1, l =
1, 2, ... in between E−,l+1 and E+,l. Because these levels are parallel,
the gap closing happens in a manner different to the case of even
C. The parallel E−,l+1 and E+,l levels will both be crossed by the
neighboring levels of different slopes, respectively E+,l−1 and E−,l+2,
but these crossings do not close the C = 2l+1 Chern gap. Only when
E+,l−1 and E−,l+2 cross at b+(l − 1, l + 2), the C = 2l + 1 gap closes.
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Writing b+(l − 1, l + 2) in terms of the Chern number yields,

bC,0 =
1

C −
√
C2 − 8

for C ≥ 3, odd (6.16)

The case of C = 1 may be analyzed separately, but we will not need
to do so because the C = 1 gap closings appear very close to the band
gap where very large resistance obscures the theoretical gap closings.

With the large b gap closings understood, we will extend these
formulae to the cascade of additional gap closings that occur at smaller
b. We will first consider the successive gaps that close due to a crossing
with a level from the positive branch. The upper and lower levels are
from the positive branch E+,l+1 and E+,l respectively. This happens
because the positive branch is monotonically increasing in l. Here we
have assumed that l ≥ 0 so E+,l is an allowed level.

The right and left levels E−,l ′+1 and E−,l ′ are from the negative
branch and their ordering is determined by noting that E−,l(b) is mono-
tonically increasing in l when E−,l(b) > 0. Because we assume l ≥ 0
and E+,l(b) ≥ 0 for all nonzero b, then crossings of E−,l ′+1(b) with
E+,l(b) occur for E−,l ′+1(b) > 0.

Hence we see that, if there is a gap closing for the Chern number
C at b+(l + 1, l ′), the next gap closing will occur at b+(l, l

′ + 1). By
repeating this argument starting with the m = 0 gaps deduced above,
we find that the mth gap for C = 2l+ 2 occurs at b+(l−m, l+ 2+m)
for m ≤ l and the mth gap closing for C = 2l + 1 occurs at b+(l −
1−m, l + 2 +m) for m ≤ l − 1. Writing the crossings in terms of the
Chern number, we find,

bC,m≤⌊(C−2)/2⌋ =


C+

√
C2−(2m+1)(2m+3)

(2m+1)(2m+3)
, C = 2l + 2,m = 0, 1, ..., l

C+
√

C2−(2m+2)(2m+4)

(2m+2)(2m+4)
, C = 2l + 1,m = 0, 1, ..., l − 1

(6.17)
After crossing the E+,0 level, all the further gap closings happen when
different levels from the negative branch intersect as shown in Figure
6.3. Let’s consider the Chern number C gap closing of E+,0 and E−,l.
The level crossings in terms of the Chern number and bC,m≤⌊(C−2)/2⌋ is
referred to as the magic series. This is called the magic series due to
the unique series number of the magnetic field where the level crossings
happen. We have overlaid this magic series with our experimental
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Fig. 6.4: Calculated Landau level spectrum. It illustrates the Landau
levels of the Rashba Hamiltonian, and indicate the level crossings with
red dots. These level crossings appear in magic series as mentioned in
the text.

data and compared them in order to understand the band structure as
described in this exact theoretical calculation.

The magic series allow us to determine all the gaps m = 0, 1, ..
in the Chern number C of the Landau fan. As noted earlier, all the
parameters of the Rashba Hamiltonian are factored out into an overall
energy scale and magnetic field scale. Hence, all the ratios of the terms
in the magic series are parameter-independent, allowing for extremely
stringent tests of the Rashba approximation. Remarkably, we find very
good agreement with the experimental data, which we will discuss in
detail later.

6.3 Landau levels of the dispersive bands

in MATBG

We have tuned the carrier density beyond the flat bands and studied
the dispersive bands in the presence of an external magnetic field. In
this regime we studied the longitudinal resistance Rxx as a function of
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Fig. 6.5: Full magnetic field phase diagram of both the flat bands and
higher energy dispersive bands at 30 mK. (a) Longitudinal resistance
(color plot) as a function of filling factor, ν and magnetic field, B.
(b) σxy and ρxx as a function of ν shows clear quantization of Chern
states outside the flat band.

B which reveals a rich fourfold degenerate LL spectrum. Figure 6.5(a)
represents the full magnetic field phase space of a MATBG device with
a twist angle θ = 1.04◦. The flat band consists of the Chern insulators
at different integer fillings as discussed in Chapter 4. Apart from that,
we also observed two new sets of LLs emerging from the edge of the
bands at the integer filling ν = ±4. One set of LLs from one of the
dispersive bands is interrupted by another set of LLs originating from
another band. We have clearly observed many crossings of the Landau
level gaps at lower magnetic field (B < 4 T) as reported in other
systems as well [104–106].

In Figure 6.5(a), dark blue lines fanning out from ν = ±4 corre-
spond to the LLs. To confirm the degeneracy of these states, we have
also measured the Hall resistance Rxy at B = 6 T. Figure 6.5(b) shows
both the longitudinal resistance (ρxx) and Hall conductivity σxy of the
dispersive band in the hole side at B = 6 T. Light orange, green and
yellow regions mark the clear quantized plateaus of the Hall conduc-
tivity (σxy) at 4e2/h, 8e2/h and 12e2/h respectively. These regions
correspond to three LLs marked by the same corresponding colours in
6.5(a). This specific sequence of the LLs indicates the fourfold degen-
eracy of the dispersive bands.

In the next section, we will discuss the crossings of these Landau
levels, in which the degeneracy of these levels will play a significant
role.
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6.4 LL crossings in the dispersive bands

We exactly solved the Rashba Hamiltonian in the presence of B field
and obtained the LLs as discussed in section 6.2, which are in excellent
quantitative agreement with the experimental findings.

Figure 6.6(a) reveals a set of LLs each carrying a Chern number
C = ±4. These set of LLs are interpolated from the Dirac node of the
dispersive bands towards the quadratic free electron regime. As clearly
visible, many of these LLs undergo a series of crossings. In order to
understand the crossings better, we have plotted Rxx as a function of
C and 1/B⊥ in Figure 6.6(b). Each of the LL (nth) with a particular
Chern number gets interrupted by another LL ((n+1)th) at a partic-
ular magnetic field value, B∗. The LL with Chern number C = -16
evolves with the magnetic field and at a particular value of B, which
is marked by red square, it closes by the interruption of the LL with C
= -24. As we keep increasing the magnetic field, the same LL gap con-
tinues. For several LLs with C = -24, -28, the LL gaps are interrupted
multiple times. We count different generations of the crossings for each
LL from high to low value of B⊥. We extract the B∗ values for all the
LL crossings (from Figure 6.6(b)) and normalize these to the B∗

|24|,3
field which is the third crossing of the LL at C = ±24 (for both elec-
trons and holes, respectively). We plotted this data as a function of |C|
with our theoretically calculated values shown in Figure 6.6(c). This
allows us to extract an estimate of the Rashba coupling parameter ξ
as discussed in section 6.2. Moreover, we find that the ratios between
all the B∗ values are independent of all the parameters of the low-
energy Hamiltonian and therefore present a stringent, parameter-free
test of the physics. We call this the magic-series. The two corruga-
tion parameters w0 and w1 of the Bistritzer–MacDonald Hamiltonian
are constrained by the measured Rashba coupling ξ = 0.186/Ω (h =
1 and Ω =

√
3/2(13.5nm)2 is the area of the moiré unit cell), pre-

senting a direct estimation of the physical parameters of MATBG. Ne-
glecting the particle–hole symmetry breaking, we find that the ranges
0.7 ≤ w0/(vFkD/

√
3) ≤ 0.80 and 0.95 ≤ w1/(vFkD)/

√
3 are in good

agreement with the measurements of the Rashba coupling, where vF
is the Fermi velocity and kD is the moiré wavevector.
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Fig. 6.6: LL crossings in higher-energy dispersive bands. (a) Colour
plot of Rxx versus ν and B⊥ measured at T = 30 mK, where the Chern
numbers of the most dominant LL gaps are marked. (b) Colour plot of
Rxx versus C and 1/B⊥ (with data from the hole side of (a)), showing
interrupting trajectories of the different LL gaps. Corresponding gap
closings are marked. (c) Comparison of the experimentally observed
LL gap closings (exp. 2nd, exp. 3rd) and the theoretically predicted
(Theory 2nd, Theory 3rd), normalized to B∗

|24|,3, the field of the third-

generation gap closing of the C = ±24 LL gaps (for electrons and
holes, respectively). The error bars are defined by the full-width at
half-maximum values ofRxx versus 1/B⊥ peaks where the LL crossings
occur.

6.4.1 Estimation of the corrugation parameters

Our measurement of ξ from the experimental data imposes constraints
on the corrugation parameters w0 and w1 which determine the band
structure of the Bistritzer-MacDonald Hamiltonian. In principle, we
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can use the Bistritzer-MacDonald band structure to numerically de-
termine ξ(w0.w1). Our measurement of ξ places a strong constraint
on the allowed values of w0 and w1. However, first, we must discuss
the approximations made in applying the Rashba-like Hamiltonian.
Importantly, the Bistritzer-MacDonald Hamiltonian only has C3 sym-
metry, whereas the Rashba Hamiltonian has full rotational symme-
try. Generically, we expect additional low-order terms to correct the
Rashba Landau level spectrum by breaking the full rotational symme-
try to three-fold symmetry. However, the excellent fit of data to the
magic series leads us to believe that such symmetry-breaking terms are
small, at low chemical potential in the higher-energy bands. This also
guides our constraint of w0 and w1.

To extract the effective ξ from the band structure of the Bistritzer-
MacDonald Hamiltonian, we study the B = 0 properties of the Rashba
Hamiltonian. The band structure is given by,

E(k) =
|k|2

2m
± λ|k|) (6.18)

from which we note that, |k| = 0 and |k| = 2mλ = ξ2/2 have the
same energy, E(k) = 0. Hence the E(k) = 0 equienergy contour gives
the value of ξ. For C3 symmetric perturbations, to the Hamiltonian,
the average |k| along the contour gives an effective value of ξ, and the
deviation of the contour gives an estimate of the perturbation. We ob-
served that the trigonal warping is stronger with decreasing w1, leading
us to expect w1 > 0.95. In this regime, ξ smoothly varies as a function
of w0. On the electron side at filling ν = +4, we find ξ ∼ 0.18 leading
us to estimate 0.70 ≤ w0 ≤ 0.80. On the hole side at ν = -4, we
find ξ ∼ 0.135 indicating a breaking of particle-hole symmetry as is
expected. For simplicity, we have not incorporated particle-hole break-
ing in the Bistritzer-MacDonald Hamiltonian. Hence the values of w0

and w1 that we estimated are valid up to (small but non-negligible)
particle-hole symmetry breaking effects.

Magnetic field dependence of Rxx in the higher energy dispersive
bands allows us to observe the crossings of different set of LLs which
present a direct estimation of the corrugation factor of the BM Hamil-
tonian. For the first time, this experimental observation allows us to
calculate the higher energy dispersive bands of MATBG which matches
the theoretically predicted band structure.
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6.5 Higher magnetic field Hofstadter spec-

trum of dispersive bands

The higher energy dispersive bands in MATBG have prominent char-
acteristics of Landau level crossings at low magnetic field. However,
the high magnetic field behaviour is mostly dominated by the Hof-
stadter spectrum. Since these higher energy dispersive bands have
larger bandwidth than flat bands, it becomes more amenable to study
the single particle Hofstadter spectrum in this range. In this section
we will discuss the Hofstadter picture of the dispersive bands from zero
magnetic field to one magnetic flux quantum per moiré unit cell (Φ0).
We have discussed how the flat band evolves in the presence of an
external magnetic field as we increase the field by one magnetic flux
quantum in Chapter 5. In this chapter we have learned that the higher
energy dispersive bands are very important to understand and verify
the ground state flat bands in MATBG. So far, we have only discussed
the behaviour of these bands at a lower magnetic field (B < 8T).

In this section we will numerically calculate the single particle Hof-
stadter spectrum of the Dispersive bands until Φ0.

6.5.1 Full Hofstadter spectrum

The higher lattice periodicity (λ ∼ 15 nm) of MATBG allows us to
study the full Hofstadter spectrum within an accessible magnetic field.
In Figure 6.7 we have plotted the available energy states for flux 2πp/q
where 2π flux = 31 T for the energy range E = ±250 meV. The flat
bands remain gapped for all flux, while the passive bands develop a
complex structure with many gaps larger than 6meV [107]. Near the
zero energy regime, the Coulomb interaction (∼ 20 meV) dominates
over the kinetic energy, suppressing any single-particle signatures inside
the flat band. Our primary observation is that the single-particle bands
undergo significant restructuring from 0 to 2π flux. At 2π flux, the
original Brillouin zone is restored and the bandwidth of the flat bands
is very similar to the zero flux bands. However, the dispersive bands
can be described by the single particle Hamiltonian. We emphasize
that our calculations are exact within the BM model, and do not rely
on k · p approximations near the Fermi surfaces. In Figure 6.7 the
Chern numbers of the largest gaps are computed using Wilson loops
and the Streda formula.
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Fig. 6.7: Full Hofstadter spectrum of MATBG with a twist angle θ
= 1.12◦. This illustrates the bands with Hofstadter gaps and Chern
numbers for the energy range E = ±250 meV.

In Figure 6.8, only the positive energy side of the Hofstadter spec-
trum has been plotted as a function of the magnetic flux (Φ/Φ0) and
energy (E). This Hofstadter spectrum is converted into the Wannier
diagram by using the Diophantine equation, as shown in Figure 6.8(b).
This Wannier diagram is the direct comparison with our experimen-
tally obtained Landau level data.

In the next section, we will compare this theoretically predicted
model with our experimental data.
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Fig. 6.8: Hofstadter spectrum and Wannier diagram for the positive
energy limit. (a) Hofstadter spectrum with LL gaps in the positive
energy scale. (b) Wannier diagram of the same energy scale.

6.5.2 Comparison between the theory and the ex-
periment

To access the full Hofstadter spectrum of the dispersive bands, we
tuned the carrier density ν > 4 and increased the magnetic field upto
Φ0. Figure 6.9(b) shows the color plot of Rxx as a function of the
normalized magnetic flux and ν. The strongest LLs, observable as
lines with slope 1/νL, are schematically laid out in Figure 6.9(c) with
corresponding (ν, νL), where we find some agreements (but also some
disagreements) between the single-particle theory and observed LLs.

The second through fifth bands of the BM model, counting from
CNP, form an elementary band representation and are forced to be
connected by symmetry. Hence, no gap is expected in the resistance
data [Figure 6.9(b)] between ν = 4 and ν = 20 at 0 flux, although there
is a Dirac point at ν ∼ 12 leading to a low density of states. This can
be seen in Figure 6.9(b) from the deep blue conducting regions near
B = 0, which are punctuated by the less conductive (lighter blue)
regions near ν = 4.

The full-density Bloch bands at zero flux split into Hofstadter sub-
bands upon applying a magnetic flux, giving rise to gaps at fractional
fillings. The Chern number C of the gaps is given by the Streda for-
mula: N = pC|q|, where N is the number of Hofstadter sub-bands that
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Fig. 6.9: (a) Calculated Hofstadter spectrum of the BM model for
positive energy as a function of the magnetic flux Φ through the moiré
unit cell. Different solid gray (4, 0), blue (4, 4), red (4, 12), yellow
(8, 4), green (8, 8), cyan (8, 12), magenta (8, 16) and purple (4, 20)
regions correspond to the evolution of dominant LL gaps. They are
marked with the band filling and filling factor (ν, νL) of the LL. (b)
Color plot of logRxx as a function of B and ν for high range of carrier
density up to ν = 16. (c) Schematics of (b) and the comparison with
(a), where gray circles mark the theoretically predicted gaps from (a)
and colored lines mark the strongest LLs in (b). The observed LLs
from (b) are plotted with the same color code as the corresponding
LLs in (a). Dark gray lines correspond to LLs, which are not predicted
from the Hofstadter calculations. These levels are the result of strong
interactions in the system (νLint). The horizontal blue bars denote
metallic regions in (a) matching the high conductance regions (dark
blue regions) observed in (b).

have been filled, as measured from CNP. At fractional filling (N ̸= 0|q|)
C must be nonzero. When interactions, spin-orbit coupling, and the
Zeeman effect are neglected, all bands are fourfold degenerate because
of the spin and valley degeneracy.

There are three main features observed in the Wannier diagram at
the integer fillings ν = 4, 8 and 12 in between the flux filling from Φ =
0 to Φ ∼ 0.5Φ0 as shown in Figure 6.9(c). Near ν = 4, we predict and
observe LLs with a positive slope emerging from the band edge which
can be attributed to the low-energy Rashba point in the passive bands
of the zero flux BM model [34].

The LLs which are connected to ν = 8 are more interesting. Al-
though there is no band edge at ν = 8 in the BM model, the mag-
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netic field breaks the C2x and C2zT symmetries that force the second
and third bands to be connected. Thus, we can understand the LLs
pointing to ν = 8 as indicating a nascent band edge which is revealed
by flux in precise agreement with Figure 6.9(a), which demonstrates
strong gaps originating from ν = 8 with Chern numbers C = 4, 8, 12
and 16. We expect increased Rxx in the regions where LLs of different
slopes cross [34]. This is observed in Figure 6.9(b) near ν = 10 where
the (8, 4) and (12, -4) LLs collide near 0.5Φ0. Additionally, at 0.5Φ0

flux, we observe very clean, highly conducting regions in Figure 6.9(b)
between the Chern gaps at ν = 8, 10, 12, 14, and 16, corresponding to
the metallic regions in the Hofstadter spectrum marked by light blue
bars in Figure 6.9(b) and 6.9(c).

There is also another set of LLs with Chern number C = 10, 18,
22 (which are not divisible by 4) which cannot be described by the
single particle picture and rely on interactions to break the spin-valley
degeneracy. These LLs originate from the strongly interacting flat
bands at zero flux and appear to remain competitive many-body states
even at large flux and high fillings. There are also LLs with νL = 8, 16
(divisible by 4) and 22 from ν = 4 which do not appear in our single
particle calculations. Further work is necessary to characterize these
states.
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Chapter 7

Effect of Electrostatic
Screening on MATBG

Strongly correlated electronic systems host multiple emergent phenom-
ena and different types of interactions. Doping an interaction driven
phase often gives rise to further correlated phases. The examples in-
clude the fractional quantum Hall states that arise due to doping the
composite Fermion sea in a partially filled Landau level [108] and a
superconducting state that arises from the doping of a correlated Mott
insulator [109]. Particularly, the coexistence of unconventional super-
conductivity and a correlated insulating phase in heavy fermion sys-
tems and pnictides led to the idea that the insulating phase can be
the main dictator of the superconductivity in these systems. However,
previous attempts to control electron–electron interactions in other
crystalline correlated systems were impeded by small atomic orbital
sizes and strong sensitivity to doping [110].

The coexistence of the correlated insulator and superconductivity
in MATBG [26, 27, 92, 111] led to an immediate question about their
relationship in the ground state. Since we can control these phases in-
dependently in this system, it gives us access to study the microscopic
mechanism responsible for each of these states. Initial experiments
have shown that the correlated insulators appear at different integer
fillings of the flat band and the superconductivity emerges upon slight
doping of these insulators. The coexistence of these orders was con-
sidered as an indication that they are directly related and they arise
from a common mechanism, similar to the scenarios that have been
proposed for the cuprates. However, in a few cases, superconductivity
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appears in a wider range of the band filling, covering the entire range
of the density between two correlated insulators at different ν. This
observation suggests that the superconductivity is a competing phase
with the correlated insulator.

In this chapter, we will discuss the interplay between these two
states by tuning the electron-electron interaction by changing the sep-
aration between the graphene and metallic layers [112, 113].

7.1 Mott-Hubbard model in a 2D lattice

The Hubbard model is an approximate model which mainly describes
the electronic states in conductors and insulators. According to this
theory, when the electrons are tied to the atoms in a lattice, they
mainly experience two types of force, one is the attractive potential
from the neighbouring atoms, called hopping energy (t) and another
is the potential term for the on-site energy (U). The Hubbard model
correctly predicts the existence of Mott insulators, materials that are
insulating due to the strong repulsion between electrons, even though
they satisfy the usual criteria for conductors, such as having an odd
number of electrons per unit cell.

7.1.1 Onsite energy and kinetic energy

The condition for the appearance of correlated insulators is a large
ratio of the onsite Coulomb energy U and the kinetic energy t, i.e.

Fig. 7.1: Schematics of the Hubbard model in an one dimensional
chain of atoms.
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U/t ≫ 1. In MATBG, t can be increased by tuning θ away from θm,
which increases the width of the flat bands. The energy U can be
controlled independently by changing the dielectric environment. If
the distance w between MATBG and a metallic layer is made smaller
than the moiré unit cell size, w < λ = 15 nm, polarization charges will
screen out the Coulomb interactions on that scale and suppress U .

7.2 Screening of Coulomb interactions in

MATBG structure

Different correlated states in MATBG strongly depend on the distance
between the graphene layer and the screening layer, graphite. We
have measured different magic angle devices with different screening
parameters. We find a strong suppression of the correlated insulators
when metallic graphite screening layers are placed closer than 10 nm
from the MATBG plane, separated from it by insulating multi-layers
of hexagonal boron nitride (hBN), and with θ tuned slightly away from
1.1◦ by ±0.05◦. Rather than being weakened, superconductivity per-
sists in the absence of the correlated insulators, taking over the phase
space vacated by the correlated insulators and spanning wide doping
regions without interruption. These observations suggest that the in-
sulating and superconducting orders, rather than sharing a common
origin, compete with each other. This observation calls into question
a simple analogy with the cuprates.

In this section, we will discuss the theoretical model of the Coulomb
screening in a twisted bilayer graphene heterostructure.

There are three different mechanisms that contribute to electric
polarization responsible for screening. One is due to the intrinsic (in-
terband and intraband) polarizability of the graphene band structure
itself, the second one is due to the dielectric permittivity of hBN and
the third one is due to image charges on the surface of the graphite gate.
In this model, we will treat the graphite gate as an ideal conductor,
setting electrostatic potential equal zero on the graphite surface. The
ideal conductor approximation is justified because the typical screen-
ing length in graphite (∼ 1 nm) is much smaller than the hBN spacer
thicknesses used in our devices.

We consider the twisted bilayer graphene layer positioned at z = 0
and the hBN spacer of width w located beneath it at −w ≤ z ≤ 0. We
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Fig. 7.2: Numerically calculated static polarizability Πq (blue curve)
compared with the prediction for two decoupled graphene monolayers
at large q.

then expand the potential of a point charge positioned in the MAG
plane, Φ(r, z), as a sum of Fourier harmonics varying in constant −z
planes with coefficients that depend on z,

Φ(r, z) =
∑
q

ϕq(z)e
iq·r (7.1)

Poisson’s equation, written in terms of the quantities ϕq(z), reads,

(∂zκ(z)∂z − κ(z)q2)ϕq(z) = −4π(e+ ϕq(z)Πq)δz (7.2)

In this equation, κ(z) is the dielectric permittivity of hBN, which is
considered to be κhBN ≈ 3.5 for −w ≤ z ≤ 0 and 1 elsewhere. Πq is
the intrinsic static polarizability of twisted bilayer graphene.

By solving the 3D Poisson’s equation for an ideal conductor bound-
ary condition on the graphite surface, we get ϕq(z = −w) = 0. From
the solution, we determine the potential in the graphene plane,

ϕq(z = 0) =
4πe

q(1 + κhBN coth qw)− 4πΠq

(7.3)
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Fig. 7.3: Electron-electron interaction in MAG screened by graphite
substrate. Shown is the dependence V (R) vs. R for several different
values of the hBN spacer thickness.

We numerically calculate the polarizability of tBLG using the elec-
tron bands obtained from the continuum model [114], within the ran-
dom phase approximation. To suppress the screening effects due to
the polarization of the flat bands, we put the Fermi level outside these
bands. We then approximate Πq to be isotropic and equal to its value
for q in ΓM direction in the Brillouin zone. For very large q (q ≫ 1

LM

where LM is the moiré superlattice period), the quantity Πq matches
the polarizability value of two electrically decoupled stacked monolayer
graphene layers,

Πq ≃ 2Πq,MLG = − qe2

2h̄vF
(7.4)

where vF = 106 m/s.
By taking an inverse Fourier transform, the screened interaction of

two point charges e at distance R is obtained as,

V (R) = e2
∫ ∞

0

dq
2J0qR

1 + κhBN coth qw − 4Πqq
(7.5)

Here, Jn(x) is the Bessel function of the first kind. This gives a
power law falloff, V (R) ∝ 1

R
for R << w and a dependence that
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Fig. 7.4: The Hubbard interaction dependence U vs. hBN thickness
w, for realistic Wannier functions obtained numerically for the MAG
Hamiltonian using the continuum model (shown in the inset). Each
Wannier function has three lobes located at AA positions of the moiré
superlattice.

decays more rapidly at distances R > w. There is also a characteristic
decrease in the potential in a bulge shaped feature at distances of the
order of LM , arising due to the difference between Πq and 2Πq,MLG.

Next, we analyze the polarization charge density on the graphite
surface, σ(r), when an electron is localized on a tBLG Wannier orbital,
W (r). In order to do so, first, using the solution of Poisson’s equation,
Eq. 7.2, and Gauss’ law, we can get the polarization charge on the
graphite surface due to a point charge at r = 0, G(r),

G(r) = −
∫ ∞

0

qdq
κhBNJ0(qr)

2π sinh qw(1 + κhBN coth qw − 4πΠq/q)
(7.6)

where r is the lateral distance on the surface of graphite from the point
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Fig. 7.5: (a) Wannier orbitals (red) in MATBG are screened by
image charges on the graphite surface (blue), where λ is the moiré
lattice constant and w is the hBN spacer thickness. (b) Calculated
onsite Coulomb energy U versus w for θ = 1.05◦ (dashed line marks
the unscreened value).

beneath the point charge. Then, we have,

σ(r) =

∫
d2r ′G(|r− r ′|)|W (r ′)2| (7.7)

The onsite Hubbard interaction, U, describes the energy cost of
adding an electron to one of the Wannier orbitals that already holds
one electron. Its dependence on the hBN thickness, w, can demonstrate
the impact of screening on the Mott insulator. Using the potential
V(R) in 7.5, U can be calculated as,

U =

∫ ∞

0

d2xd2x ′|W (x)2||W (x ′)2|V (|x− x ′|) (7.8)

The Wannier functions have a typical spatial extent of the order of
LM . Therefore, when the hBN thickness w is smaller than LM , the
screening effects discussed above result in a dramatic suppression of
the Hubbard interaction. This behavior is illustrated in Figure 7.4.

Hence, the screening effect is a strong function of the distance be-
tween graphene and the metallic graphite layers. We have observed
that as we keep decreasing this distance, the screening effect becomes
a dominant parameter which decreases the Coulomb interaction be-
tween particles and changes the phase space of tBLG substantially.

If the distance w between MATBG and a metallic layer is made
smaller than the moiré unit cell size, w < λ ≈ 15 nm, polarization
charges will screen out the Coulomb interactions on that scale and
suppress U . In Figure 7.5(a) we have shown the schematics of the po-
larization charge for two different scenarios with different hBN thick-
nesses w. In the first case, w is much smaller than the moiré periodicity
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λ, and the image charges are much closer than the second case. Hence
the screening effect is stronger in the first case than in the second case.
In Figure 7.5(b) we have plotted the U as a function of w. When
the hBN thickness (w) is higher than ∼ 30 nm, we can neglect the
screening effect in the system.

In the next section, we will elaborate this effect in different devices
with different hBN thicknesses and with slightly different twist angles.

7.3 Comparison between different phase

diagrams of MATBG

In the previous section, we have discussed the theoretical model for
the Hubbard interaction ans how it changes with different screening
lengths. However, another crucial parameter which determines the
phase space of MATBG is the twist angle. The band width of MATBG,
which dictates the correlation between particles is a strong function
of the twist angle. Hence, we also have to consider the twist angle
dependence of the phase space apart from the hBN thickness.

7.3.1 Different devices

We have measured three different devices (D1, D2 and D3) with pa-
rameters, w1 = 7 nm, θ1 = 1.15◦ (D1), w2 = 9.8 nm, θ2 = 1.04◦ (D2)
and w3 = 12.5 nm, θ3 = 1.10◦ (D3).

The bottom hBN thickness is obtained from atomic force microscopy
(AFM) measurements. Figure 7.6 demonstrates a set of MATBG het-
erostructures that have been used to fabricate the devices. The upper
panel shows an optical image of the final graphite/hBN/MATBG/hBN
stack. We find that the heterostructures exhibit high structural homo-
geneity and do not show visible bubble formations, which are known
to locally distort the twist angle and charge carrier density. These
observations are further confirmed by the AFM scans shown in the
insets. The AFM scans are also used to extract the topography of the
fabricated stacks where we find hBN thicknesses of w ∼ 7.0 nm (D1),
9.8 nm (D2) and 12.5 nm (D3).

The difference in bottom dielectric thickness is further confirmed by
measurement of the capacitance between the graphite and the MATBG
layers. Extracted from the quantum oscillations map, we find that the
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Fig. 7.6: AFM and optical images for samples D1((a)), D2((b)), and
D3((c)) The main panels are optical images of final stacks, from which
all three devices were fabricated. The insets demonstrate AFM scans
of the final devices etched into multi-terminal Hall bar geometries.
Dashed black squares show AFM image areas. Bottom hBN thickness
measurements are shown on the lower panel graphs. Height profiles
are taken along the white dashed arrow lines. Scale bars are 5 µm.

back gate capacitance is 355 nF/cm2 for D1, 260 nF/cm2 for D2 and
221 nF/cm2 for D3, This also matches with the extracted AFM height
profiles.

7.3.2 Phase space of three devices

We used four terminal resistivity measurements (ρxx) to characterize
the transport behaviour of the three devices mentioned above. The
carrier density (n) was tuned by the graphite gates. The total carrier
density, n was normalized by nS, the density of the fully filled band,
which defines the band filling factor, ν = n/nS.

The resistivity of each device is measured as a function of the band
filling factor for a temperature range from T = 40 mK to 3 K. Figure
7.7 shows the colour plot of the resistivity ρxx as a function of filling
factor, ν for several temperatures from T = 40 mK upto T = 3 K.
Dark red regions correspond to highly resistive states and dark blue
regions signify the zero or very low resistive states.

Notably, device D1, which has the thinnest w and a θ that is only
slightly higher than the magic angle, demonstrates a phase diagram
that is very different from those of all previously reported MATBG
devices. This device does not show any insulating state at ν = ±2. Its
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Fig. 7.7: Colour plot of ρxx as a function of ν and temperature T
for three different devices, D1, D2 and D3. Signatures of correlated
insulators (CI) are completely absent in devices with the thinnest w
(D1 and D2), while superconductivity (SC) persists and Tc values
remain virtually unaffected. BI stands for band insulator.

resistivity ρxx has metallic behaviour near and at the integer fillings
and the absolute value of resistance never exceeds few kΩ. This obser-
vation suggests that there is no Fermi surface reconstruction at ν = ±2
which is also evident from the lack of a new set of quantum oscillations
originating from this point at perpendicular magnetic field. However,
we have observed two broad superconducting domes at ν = ±2. On
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the electron side the superconducting dome is very strong and wide,
taking the vacated space of the absent insulator at ν = +2. We have
also measured the superconducting transition temperature (Tc) of both
the SCs from the typical 50% value of their normal state resistances.
The Tc of these states is Tc = 920 mK and 420 mK for the SC at the
valence and conduction band respectively. The primary distinguishing
feature of this phase space is the absence of any correlated insulating
state while having two strong superconducting domes at ν = ±2.

This is in direct contrast to the phase space of the device D3. De-
vice D3 has the thickest hBN with w = 12.5 nm and a twist angle
which is exactly the magic angle (θ = 1.10◦). It shows prominent insu-
lating peaks at all the integer fillings of the flat band. All the insulators
are strongly dependent on the temperature. From the quantum oscil-
lation behaviour, we have observed that a new sequence of oscillations
originate from each of the integer fillings, which suggest a new Fermi
surface reconstruction and the opening of mini gaps, induced by the
correlation. Here the superconductivity domes directly flank the cor-
related insulators at integer fillings. These superconductors are similar
to the previous studies. The Tc of these SCs vary from 150 mK to 3
K.

Since, this device is twisted exactly at magic angle, correlation
is much stronger than other devices, hence the presence of all the
insulators is explained. We argue that the band width of this device
plays a prominent role here compared to D1 and D2.

Device D2, with an intermediate w = 9.8 nm value and a θ = 1.04◦,
slightly smaller than θm, displays features present in both D1 and
D3. Although it does not display correlated insulators in the valence
band, it shows a single superconducting dome with a Tc ≈ 400 mK.
In the conduction band it features a non-activated resistance peak at
ν = +2, suggesting an underdeveloped correlated insulator, and two
superconductivity domes flanking it, with Tc ≈ 500 mK and Tc ≈
650 mK. All the three devices have a small insulating gap at charge
neutrality point. It remains, however, unclear whether interaction or
trivial band effects break the symmetry at the CNP.

The superconductivity in all the three devices was confirmed by
a multitude of tests, including measurements of zero resistance and
Fraunhofer interference patterns.
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7.4 Interplay between correlated insula-

tors and superconductors

In the previous section, we have shown that the correlated insulators
and superconductors appear independently in the phase space depend-
ing on the hBN thickness w and the twist angle θ unlike the cuprates.

In Figure 7.8(a), ρxx is plotted for the flat band in log scale for
several temperatures from T = 20 mK to 5 K. Device D3 has all the
resistance peaks at different integer fillings, and SCs flanking out of
these states sending the resistance to zero. The lower panel in Figure

Fig. 7.8: The dependence of the superconductivity and correlated
insulating phases on temperature and density. (a) Line cuts of resis-
tivity ρxx versus filling factor ν, of devices D1, D2, D3, for different
temperatures T from 20 mK to 5 K. (b) ρxx versus T for moiré band
fillings of ν = ±2 for each device. Although D1 and D2 show metallic
behaviour in both valence and conduction bands, D3 shows strongly
thermally activated behaviour, consistent with strong correlated insu-
lating order.
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7.8(b) represents the temperature dependence of the ν = ±2 states.
From the temperature activated behaviour (ρxx ∼ e∆/2kBT ) we calcu-
lated the gaps to be ∆ = 0.37 meV for the ν = +2 state and ∆ = 0.34
meV for the ν = −2 state.

Device D1 did not show any resistance peak except the CNP at ν =
0. Although low temperature behaviour clearly shows two zero resistive
states at ν = ±2. The upper panel in Figure 7.8(b) corresponds to
the temperature dependence of the ν = +2 (red curve) and the ν = -2
(blue curve) states. The half filling state in the conduction band has a
clear superconducting transition and the valence band half filling state
is at the edge of the SC dome.

Device D2 displays intermediate characteristics between D1 and
D3. On the hole side, we did not observe any insulating behaviour
at ν = -2, as shown in the middle panel of 7.8(a). It has a metallic
behaviour as we have plotted the temperature dependence in Figure
7.8(b). The electron side as well does not possess clear insulating
behaviour. It has a non-activated resistance peak at ν = +2, which is
interrupted by two superconducting domes.

Overall, these findings clearly show that superconductivity can ex-
ist independent of correlated insulating states in MATBG, indicating
that these phases are in competition with one another rather than
sharing a common microscopic origin. Whereas insulating states are
quenched in D1 and D2, the corresponding superconducting Tc values
remain almost unaffected, falling in the same Tc ≈ 500 mK – 1.5 K
range that was previously reported for devices with similar twist angles,
but in the presence of strong insulators. Because both the screening
and bandwidth effects affect U/t, it is difficult to completely disentan-
gle these effects from the data sets at present available. Comparison
with the limited data from literature, however, indicates that screening
may be a dominant effect in D1 (θ ≈ 1.15◦) and D2 (1.04◦), because
these are the only reported devices that do not show any signatures of
correlated insulating states so close to the magic angle of 1.1°.

These findings have certain implications regarding the origin of SC
state in MATBG. The observed resilience of superconductivity upon
suppression of the insulating phase is consistent with the two phases
competing rather than being intimately connected. Such competition
would be hard to reconcile with a common microscopic mechanism of
the two phases as suggested by an analogy with cuprates. Instead,
it appears that Coulomb interactions drive the formation of the corre-
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lated insulators, whereas superconductivity arises from a more conven-
tional mechanism. However, the anomalous character of superconduc-
tivity in MATBG, occurring at record low carrier densities, suggests
that the electron-phonon mechanism, if present, is enhanced by the
high density of states and electron correlation effects.
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Chapter 8

Strange Metallicity in
MATBG

From the time of its discovery, MATBG has been a constant debate
regarding the origin of the different correlated quantum phenomena.
Along with the other properties such as, correlated insulator, supercon-
ductor etc. strange metallicity is also an important phenomena that
has been observed in this system. The observation of strange metal-
licity helps us to understand the electronic mechanism of the ground
state of the system. In the previous studies, people have reported the
temperature dependence of the resistivity of a series of twisted devices
with a range of twist angle from θ = 0.75◦ to θ = 2◦ [115]. This
study shows a linear temperature dependence (T ) of the resistivity (ρ)
over a wide range of temperature, hinting a dominant electron-phonon
coupling in the system.

In another study [116], people have reported a T -linear resistivity
over a small range of densities near the correlated insulators. This
behaviour has also been observed in other strongly correlated systems
such as ruthenates [117, 118], cobaltates [119, 120] etc. This behaviour
in heavy fermion system is often termed as strange metallic state.

In this chapter, we will discuss the temperature dependence of a
MATBG device in which all the correlated insulators are suppressed
due to the screening by the metallic gate. The T -linear resistivity ex-
pands upto a very low temperature and also continues over a wide
range of carrier densities. This typical behaviour is coined as the
strange metal phase. The observation of this phase is also assisted
by magneto-resistance measurements.
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8.1 Resistivity in Landau’s Fermi liquid

theory

The electronic behaviour in a solid can be described by the Landau’s
Fermi liquid theory which predicts that the electrons in a solid can
be treated as well-defined fermions despite their interactions. These
electrons are called the quasiparticles with charge e, spin 1/2 and mass
m∗. This theory describes the normal behaviour of most of the met-
als at sufficiently low temperatures [121]. At low temperature, the
heat transfer of the quasiparticles is given by their ability to transfer
charge. This is given by a universal relation, called the Wiedemann-
Franz (WF) law [122]. The WF law is one of the basic properties of
a Fermi liquid, reflecting the fact that the ability of a quasiparticle to
transport heat is the same as its ability to transport charge, provided it
cannot lose energy through collisions. Empirically observed by Wiede-
mann and Franz in 1853, this law connects the electrical conductivity
σ and the thermal conductivity κ of a metal by a universal constant,

κ

σT
=
π2

3

(
kB
e

)2

≡ L0 (8.1)

where T is the absolute temperature, kB is the Boltzmann’s con-
stant and L0 = 2.45× 10−8WΩK−2 is the Sommerfeld’s value for the
Lorentz ratio, L = κ/σT .

The linear power of temperature in equation 8.1 comes from the lin-
ear temperature dependence of the fermionic specific heat, through the
relation between heat transport and heat capacity. In kinetic theory,

κ =
1

3
cvl (8.2)

where, c is the specific heat of the carriers, v is the average velocity
and l is their mean free path.

If the mean free path l is considered to be independent of the tem-
perature, the heat conduction has same temperature dependence as
the specific heat when T → 0. So, according to equation 8.1, it is also
linear in T for electrons.

In this picture, the resistivity of the solid is given by,

ρ = ρ0 + AT 2 (8.3)
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where ρ0 is the residual resistivity attributed to the impurity scat-
tering, and the second term A is the contribution of the electron-
electron scattering.

In the next section, we will thoroughly present the resistivity of dif-
ferent twisted bilayer devices upto a very low temperature and discuss
their behaviour in the light of Landau’s Fermi liquid theory.

8.2 Temperature dependence of resistiv-

ity in MATBG

We have measured the detailed transport behaviour of eight devices
with twist angles, D1 (θ = 1.04◦), D2 (θ = 1.10◦), D3 (θ = 1.03◦), D4
(θ = 1.02◦), D5 (θ = 1.30◦), D6 (θ = 1.40◦), D7 (θ = 1.50◦) and D8
(θ = 1.05◦) upto a very low temperature of T = 40 mK. In this study,
we focused on the device D1 with ultra-close metallic screening layers
in order to reveal the low temperature metallic states [36, 123]. As dis-
cussed in the previous chapter, all the correlated insulating states are
suppressed by the screening effect, making the metallic states promi-
nent upto a very low temperature in this device. We have measured the
device over a broad range of parameter space with the carrier density
tuned across the entire flat band and temperatures range from T = 40
mK to T = 20 K. This device contains superconducting domes both
in conduction and valence bands even in the absence of the correlated
insulators. We have noticed that the devices with twist angles close
to magic angle θm, have linear T resistivity [115, 116] above T > 1
K and continues until T = 40 mK. This can not be explained by the
electron-phonon coupling.

We have also investigated the magnetic field dependence of the
resistivity. Resistivity (ρ) varies linearly with the magnetic field (B)
inside the flat band, which is a typical signature of the strange metal
behaviour. However, near the band edges, Fermi-liquid behaviour is
restored and we found ρ ∼ (T 2, B2). This Fermi liquid behaviour is
also observed for the higher twist angle (θ > 1.3◦) devices.

In this section we will separately discuss the transport behaviour
of both magic angle devices and higher twist angle devices in order to
distinguish the differences between them.
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8.2.1 Devices with twist angle close to magic angle

We have measured several devices with twist angle close to magic angle
which show similar behaviour. Figure 8.1(a) represents four terminal
longitudinal resistivity (ρ) of device D1 as a function of the band filling
factor (ν(n0)). The black curve corresponds to T = 40 mK and top
most light grey curve corresponds to T = 20 K. We have observed
insulating behaviour at ν = 0 (CNP) and at ν = ±4 (BI).

Another insulating state was observed close to the band filling ν =
+3. Additionally, three SC domes were observed close to the half filling
of both conduction and valence bands (ν = ±2). In this device, the
the separation between the metallic screening layer and graphene is
smaller than the Wannier orbital size (∼ 15 nm). Due to the screening
effect all the correlated insulators at ν = ±2 are suppressed leaving
the entire valence band metallic except the SC dome.

This isospin Pomeranchuk effect was also observed, where the resis-
tance peaks at ν = ±1 are more pronounced at elevated T [124, 125].
The simple phase space of this device without any interruption of the
correlated states allows us to thoroughly study the metallic ground
state of the system.

We have focused on the evolution of the temperature dependence
of the derivative of the resistivity ((∂ρ/∂T )ν) with respect to the band
filling factor in Figure 8.1(b). Typical insulating states are observed
at CNP and at the band edges at ν = ±4.

The details of this behaviour are illustrated in Figure 8.1(c) which
presents the resistivity versus temperature for successive filling factors.
Starting from the insulating regime at the charge neutrality point,
metallicity is recovered at ν ≈ −0.15, which first shows a super-linear
temperature dependence below T < 15 K and then saturates into a
linear dependence [126]. With increased doping, the onset of the lin-
ear dependence is quickly shifted to lower temperatures. Starting from
ν ≈ 2, the T-linear regime extends down to the base temperature
and remains T-linear until a second super-linear regime is found for
ν < −3.5. This strange metal phase is only interrupted by a supercon-
ducting transition observed around half filling.

In order to understand the temperature dependence of the resis-
tivity with actual power dependence, we have plotted ρ(T ) − ρ0 on a
log-log scale in Figure 8.2. This allows us to trace down the resistivity
over more than three orders of magnitude. We analysed the resistivity
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Fig. 8.1: Temperature dependence of the resistivity. (a) Resistiv-
ity (ρ) as a function of filling factor (ν(n0)) for several temperatures
ranging from T = 40 mK (black curve) to T = 20 K (light grey). In-
set shows the optical image of the device with twist angle θ = 1.04◦.
(b) Colour plot of ∂ρ/∂T as a function of ν(n0). Charge neutrality
point (CNP), band insulator (BI) and superconducting domes (SC)
are marked. Several line cuts along the dotted lines are plotted in
(c). (c) Temperature dependence of the resistivity in the hole doped
side of the flat band. Dark blue line corresponds to the density near
CNP, light orange to maroon colour curves are close to the SC dome
at ν = −2 and sky blue line corresponds to the curve near BI.
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Fig. 8.2: Log-log plot of (ρ(T ) − ρ0) versus T for the highlighted
filling factors in 8.1 in the same colour. Power-law fits of the low T
dependence are shown by straight lines. An evolution from a quadratic
ρ ∝ T 2 dependence near CNP and full filling, to a linear ρ ∝ T
dependence inside the flat band region was seen. The inset shows the
evolution of the pre-factor AT,γ upon doping both for the linear-in-T
resistivity (left y axis) and the T -squared resistivity (right y axis).
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by fitting it with ρ(T ) = ρ0 +Aγ,TT
γ. Where, Aγ,T is the prefactor, γ

is the exponent of the power dependence of the resistivity and ρ0 is the
residual resistance at T= 0. Each of the curve is fitted with Aγ,TT

γ

which results into a linear line in the log-log plot. In this analysis, γ
is directly given by the slope of the line γ = ∂[ln(ρ(T )− ρ0)]/∂[ln(T )].
We have found that close to CNP (ν = −0.2) and near BI (ν = −3.7),
γ = 2± 0.1, which clearly shows the super-linear dependence of resis-
tivity, i.e. ρ ∝ T 2. However, inside the flat band, for the filling factor
range −3.7 < ν < −0.2, we have observed γ ≈ 1 pointing towards
the linear dependence of resistivity, ρ ∝ T . This T -linear resistivity
extends from the base temperature of 40 mK to 10 K without any
interruption and it saturates above this temperature.

Similarly, we have also measured the temperature dependence of
four more devices which are close to magic angle and exhibits similar
behaviour. Figure 8.3 represents the temperature evolution of resistiv-
ity for four devices with twist angles θ = 1.10◦ (D2), θ = 1.03◦ (D3),
θ = 1.02◦ (D4) and θ = 1.30◦ (D5). Devices D2 and D3 both showed a
succession of low temperature superconducting and correlated insulat-
ing states in the center of the flat band region. These states make the
metallic ground state hardly accessible. Yet, one remains able to see
in D3 that the resistivity scales super linearly with temperature near
the charge neutrality point and a T linear term develops in the core
of the flat band (although here interrupted at low T by several phase
transitions). This behaviour was also observed in devices D4 and D5
although these devices were not tracked below T = 1.6 K.

In both devices, we observed a clear evolution from a low temper-
ature superlinear (parabolic) resistivity near charge neutrality into a
T -linear resistivity extending down to the lowest temperatures in the
center of the flat band. With further doping, the slope of this linear
resistivity increased until a superlinear resistivity at low temperature
was recovered.

We have summarized the behaviour of the magic angle devices
(mainly device D1) in a schematics in Figure 8.4(a).

The phase space, as illustrated in the schematics is mainly divided
into two parts. Near the charge neutrality point and the band edges,
resistivity is a quadratic function of the temperature (ρ ∝ T 2). We
associate this with the typical Fermi liquid behaviour of the carriers
due to strong electron-electron scattering. Near the band edges, car-
rier concentration decreases and electron-electron scattering becomes a

153



Fig. 8.3: Resistivity as a function of the temperature for several
filling factors. (a) Device D2 with θ = 1.10◦. (b) Device D3 with
θ = 1.03◦. (c) Device D4 with θ = 1.02◦. (d) Device D5 with
θ = 1.30◦. Highlighted plots correspond to the filling factors as marked
on the right. Linear-T resistivity behaviour was observed in all of these
four devices.
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Fig. 8.4: Phase diagram of device D1. (a) Typical schematics of
the (ν, T ) phase space of the valence band of D1. SC is illustrated by
the red dome in the middle of the SM phase inside the flat band. FL
behaviour is observed close to the band edges (both near CNP and
BI). (b) ρ as a function of the temperature for ν = −2.8 at B = 0 and
at Bc = 300 mT. Error bars correspond to the 95% confidence bound
on the linear fit of the MR. (c) Evolution of the ρ(T ) as a function of
the B at a T = 40 mK. A linear ρ is recovered by suppressing the SC
upto B = 1.5 T. Red solid curve shows the linear MR.
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dominant process in the transport. However, as we move further away
from the band edges and reach inside the flat band, we observed two
phase transition from quadratic T dependence to linear T dependence
of the resistivity. This non Fermi liquid phase transition happens for
a filling factor −3.5 < ν < −2. Thus, it is tempting to identify the
latter state as a strange metal above a quantum-critical phase, wherein
the finite T metallic properties are dominated by critical fluctuations
[127–132]. This behaviour can be explained by the famous Planckian
scattering in strange metal phase in which the scattering rate is defined
by the universal Planckian limit 1/τ = kBT/h̄. In this scenario, the
scattering rate is uniquely defined by the Planckian limit and does not
depend on the type of scattering in the system [133]. This type of T -
linear resistivity was observed in other systems such as La2−xSrxCuO4

(LSCO) and Bi2Sr2CaCu2O8+x (Bi2201) [134] down to T → 0. This
type of behaviour was associated with the reconstruction of the Fermi
surface [135] and had been observed both at and far away from the
critical point.

In the schematics of the phase diagram in Figure 8.4(a), we have
observed a broad superconducting dome close to the half filling of the
hole-doped flat band which is illustrated by the red dome in the middle
of the light red coloured strange metal phase (ρ ∝ T ) region. We could
recover the strange metal phase by applying an out-of-plane magnetic
field to the superconducting state. Figure 8.4(b) shows a line cut
across the dotted red line in the phase space for ν = −2.8. At zero
magnetic field the superconducting transition happens at a temper-
ature Tc = 250 mK as shown by the red scattered plot. However,
application of a small magnetic field of Bc = 300 mT, we could re-
cover the linear resistivity behaviour. This linear behaviour continues
until a magnetic field of B = 1.5 T when we measured at T = 40
mK as plotted in Figure 8.4(c). The recovery of the strange metal
phase upon applying a small magnetic field has been observed in many
strongly correlated systems before which are both superconducting and
non-superconducting [136, 137].

8.2.2 Devices with twist angle far away from magic
angle

Our report makes a convincing case that strong electronic correlations
in the flat bands of MATBG drive the emergence of the low tem-
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Fig. 8.5: (a) Resistivity (ρ) as. A function of T for several dopings
in hole doped flat band of D6. Coloured line plots correspond to the
same filling factor as described for D1 in the previous section. (b)
Same ρ vs T plot with the highlighted coloured plots for the given ν
for device D7.

perature linear resistivity in quantum critical scenario. To check this
intricate connection, we explore in more detail other devices with twist
angles that deviate from the magic angle. We studied couple of devices
which have twist angle slightly higher than the magic angle (θm). In
this section we will mainly focus on two devices, namely D6 (θ = 1.4◦)
and D7 (θ = 1.5◦). Both devices D6 and D7 do not show any liner
T resistivity in the entire hole doped flat band region. They have a
quadratic T dependence of ρ.

Due to the higher twist angle of these devices, bandwidths are much
higher than a typical MATBG, hence the correlation is weaker in these
systems. They do not show signs of quantum critical behaviour, as it is
highlighted in Figure 8.5. This shows ρ as a function of T for the same
filling factors as discussed for D1 in the previous section. In contrast,
we did not observe any linear T dependence for both the devices D6
and D7. Instead, we find a parabolic temperature dependence across
the entire hole doped band.
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Fig. 8.6: (a) Colour plot of ∂ρ/∂B as a function of ν and B. (b) ρ
as function of the B for several filling factors highlighted by the same
colour as discussed in the T dependence.

The devices twisted further away from the magic angle show a T 2

- dependence, i.e. typical Fermi liquid behaviour, across their entire
band at low temperatures. This suggests that electronic correlations in
the Fermi liquid ground state are also enhanced near the magic angle.

8.3 Magnetic field dependence of resistiv-

ity

Besides the temperature dependence of the resistivity, another signa-
ture characteristics of the strange metal phase is the B - linear mag-
netoresistance. This behaviour has been observed in many supercon-
ducting and heavy fermion system and this delivers more evidence of
the existence of the critical fluctuation interacting with the metallic
ground state of the system. Figure 8.6(a) shows a colour plot of the
numerical derivative of the resistivity (∂ρ/∂B) as a function of the fill-
ing factor ν and B for the same hole doped region of the flat band in
device D1.

Several line cuts are plotted in Figure 8.6(b), along the filling fac-
tors as discussed in the temperature dependence section in order to
have a direct comparison between ρ(T ) and ρ(B). WE have also per-
formed a similar analysis of the power law dependence of the ρ by
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fitting the parameter ρ(B) = ρ0 + Aγ,BB
γ in the log-log scale of ρ

vs. B. The power dependence γ was calculated from the slope of this
fitting curve, given by the equation,

From this analysis, we have observed a very similar behaviour as
the T dependence. Near the CNP (ν = −0.2) and BI (ν = -3.7), γ ≈ 2
and inside the flat band (−3.7 < ν < −0.2), we observed a linear B
dependence, i.e. γ ∼ 1.

8.4 Strange metal in MATBG

These findings make a clear case that MATBG possesses a Planckian
limited T linear resistivity that extends down to a very low tempera-
tures of 40 mK and occurs alongside a quantum B linear magnetore-
sistance. Such behaviour is incompatible with a Fermi liquid picture
and conventional electron phonon scattering. The Fermi liquid be-
haviour is observed throughout the entire moiré band at non magic
angles, by contrast, in MATBG it is pushed to the flat band edges.
We therefore conclude that a strange metal phase exists, arising from
a quantum critical region spanning a range of dopings including but
not limited to those where the Fermi surface reconstructs and where
quantum fluctuations dominate the metallic ground state of MATBG.
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Chapter 9

Conclusion and Outlook

In this thesis, we have studied the transport behaviour of electrons in
magic angle twisted bilayer graphene system. The experimental dis-
covery of flat bands in MATBG started a new research field, called
twistronics. These flat bands are proved to be a rich platform to study
multiple strongly correlated phenomena. Strong interactions in these
flat bands give rise to fascinating states of matter such as superconduc-
tivity, correlated insulator, magnetism etc. However, the exact mech-
anisms of these states are still not established as they are very chal-
lenging to study theoretically. Different approaches have been made
in order to understand the ground state mechanism in MATBG. Sim-
ilarly, we have applied an external magnetic field to study the phase
space of this system and to understand what it can infer about the
ground states. We have also increased the applied magnetic field to
study the full Hofstadter spectrum of the twisted bilayer graphene su-
perlattice.

We have discussed a detailed fabrication process of our magic an-
gle twisted bilayer graphene devices in Chapter 3. Starting with the
mechanical exfoliation of 2D materials on silicon oxide substrates, we
described the process of making van der Waals heterostructures in
multiple steps with great details. We have also pointed out few pre-
cautionary measures during the stacking process to increase the yield
of devices.

Then we have moved to the experimental results. We have started
by studying the detailed magnetoresistance behaviour of MATBG de-
vices upto an external magnetic field of B = 8 T at a very low temper-

161



ature of T = 40 mK in Chapter 4. Before going into the experimental
details, we have represented the theoretical construction of the Chern
insulator in two dimensional lattice systems. In the first section of
Chapter 4, we have started with the basic formalism of the Landau
levels in two dimensional electron gas in the presence of an external
magnetic field. We have continued with computing the Berry phase
and Berry connection of the system and moved to calculate the Chern
number of the bands from there. We have then calculated the for-
mation of a Chern insulator in a honeycomb lattice which is similar
to the Chern insulator in twisted bilayer graphene (TBG). After dis-
cussing a more general picture, in the next section we moved to TBG
and elaborated different degeneracies and symmetries in this system.
Correlation in MATBG breaks certain symmetries and open up the
mini band gaps inside the flat bands. Due to the opening of these mini
gaps, we observed separate Chern bands at different integer fillings of
the flat band, which has been discussed in this section.

After this brief theoretical discussion, we moved to the experimen-
tal details in MATBG. We started with the basic characterization of
our devices by measuring the temperature dependence of the resistiv-
ity. From the band insulating peaks and correlated insulating peaks at
low temperature (T < 20 K), we determined if a device is twisted or
not. We have calculated the twist angle of the devices by multiple ways
from the magnetic field dependence of the longitudinal resistance (Rxx)
and Hall resistance (Rxy). After the measurement of twist angle we
selected the devices with twist angles close to magic angle for further
measurements in dilution fridge down to T = 40 mK. The basic mea-
surements of a magic angle device were discussed in the next section
where we have observed superconductivity, correlated insulators and
magnetic states inside the flat band. We have then moved on to study-
ing the magnetic field dependence of three devices A1 (θ = 1.04◦), A2
(θ = 1.03◦) and A3 (θ = 1.10◦). We studied both longitudinal and Hall
resistances of these devices at a lower magnetic field upto B = 8 T.
We have observed quantized Rxy upon applying a small magnetic field
at different integer fillings of the flat band which corresponds to Chern
insulator with the Chern number given by the quantization. From
several devices, we have also constructed a general schematics of the
phase space of MATBG with Chern insulators, superconductors and
correlated insulators marked in it. Furthermore in the last section of
Chapter 4, we have calculated the gap of Chern insulators which vary

162



a lot from typical Landau levels gaps and generally much bigger than
LL gaps.

In summary, our data provided a new and detailed view of the
high B field phase diagram of MATBG and demonstrate its underly-
ing topologically non-trivial properties. The topological nature of the
flat bands in MATBG observed in this study has implications for the
potential understanding of the superconducting phase, which needs to
be understood on the basis of the ground states found here further,
this could be considered as topological superconductivity. To further
comprehend the microscopic mechanisms driving the Chern insulator
and interactions between the various quantum states (Chern insula-
tor, superconductor and orbital magnet), one possible direction is to
control the correlated states by inducing dielectric screening or spin-
orbital coupling in higher quality devices in further experiments.

After thoroughly studying the low magnetic field characteristics of
MATBG in Chapter 4, we moved on to studying the high magnetic field
Hofstadter spectrum of the flat band in Chapter 5. Moiré superlattices
when placed in a sufficiently high magnetic field give rise to a fractal
behaviour called Hofstadter spectrum. The periodicity of the moiré
superlattice in MATBG is almost 3000 times bigger than the lattice
period of graphene which makes the required magnetic field to reach
one magnetic flux (Φ0) in MATBG be much smaller. For a typical
magic angle device the required magnetic field to reach Φ0 is B0 =
25θ2 ∼ 30 T. In the first section of Chapter 5, we have started with
the basic theoretical formalism of the Hofstadter spectrum in moiré
system and then moved on to the observation of this phenomena in
other 2D systems and finally discussed the spectrum in MATBG.

In the next section of Chapter 5, we demonstrated a detailed magneto-
transport behaviour of a magic angle device upto a magnetic field of
B = 31 T, sufficiently high to reach the Φ0 in this device. Analysing
the full magnetic field phase space, for the first time we observed re-
entrant correlated insulator at integer fillings of the flat band close to
the Φ0. This observation experimentally verified the theoretical predic-
tions that MATBG possesses flat band at Φ0. We have also measured
the temperature dependence and magnetic field dependence of the in-
sulating states in order to compare them with the zero-field insulators
and found out that the temperature activation gap size of the insulators
at Φ0 is bigger than the zero-field insulators. However, the magnetic
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field dependence had a similar trend for both insulators at zero field
and at Φ0. The flat bands close to Φ0 have a different symmetry and
degeneracy than the zero-field flat bands and we have verified this by
closely looked into the Landau levels that originated from different in-
teger fillings. From the emerging LLs at different integer fillings we
have illustrated the Fermi surface reconstruction and opening of mini
band gaps at different integer fillings of the flat band at Φ0.

In summary, we reported the first observation of interaction driven
correlated insulating phases at one flux quantum per moiré unit cell in
MATBG. Our experimental observations largely agreed with our sin-
gle particle Hofstadter calculations, which predicted the emergence of
a set of electronic flat bands at full flux with different symmetry and
topology than the zero-field flat bands. These bands are unstable to
the creation of correlated states by interactions.

Flat band in MATBG draws a lot of attention in the last few years
as it gives rise to multiple correlated phenomena which are otherwise
absent in a single system. However, the higher order dispersive bands
in MATBG are also interesting and worth studying for. In Chapter 6
we have demonstrated the magneto-transport behaviour of the higher
energy dispersive bands in MATBG. We started with the discussion
of the band structure which has a Rashba-like structure and then we
moved on to the discussion of Landau levels in these bands as we ap-
plied an external magnetic field. In Rashba-like bands, two sets of LLs
emerge from each of the band and the cross each other at a particular
magnetic field. We have calculated the Landau level crossings in this
system and by fitting a parameter free term in the BM Hamiltonian
and found a magic series of magnetic field (B∗) where the level cross-
ings happened. We have then compared this theoretical model with
our high quality experimental data and observed an excellent match
between them. Our measurement of the experimental level crossings
imposed constraints on the corrugation parameters which determine
the band structure of the BM Hamiltonian. Our data provided a direct
experimental verification of the theoretically calculated higher energy
dispersive bands in MATBG for the first time.

We then moved on to studying the high magnetic field Hofstadter
spectrum of these dispersive bands upto a magnetic field of Φ0. The
higher energy dispersive bands have higher bandwidth and are respon-
sive to the single particle Hofstadter analysis. We have calculated a
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series of LLs that emerged from the dispersive bands and experimen-
tally tuned the carrier density beyond the flat bands (ν > 4) to study
these LLs. By carefully compared our experimental data with the the-
oretically predicted Chern numbers (C), we concluded that there are
several LLs which matched perfectly with the single particle Hofstadter
model. However, another set of LLs emerge from these bands which
were not found in the single particle picture. We concluded that these
levels can not be described by the single particle Hofstadter picture
and needs interaction terms to explain.

In Chapter 7, we have studied the effect of Coulomb screening on
the flat bands and on the correlated phenomena in MATBG. In both
cuprates and in MATBG people have always observed the supercon-
ductor near an insulating state. The coexistence of these two phases
immediately raise a question about their microscopic origin and inter-
play between them. It is well known that the electrostatic screening
has a direct effect on the correlation in a system and in MATBG this
screening can be tuned by changing the distance between graphene
layers and the metallic gate. In the first section of Chapter 7, we have
discussed the Mott-Hubbard model in a 2D lattice and compared the
role of onsite energy (U) and hopping energy (t) in a lattice. We then
moved on to calculate the screening in MATBG by considering the
image charge problem with respect to the local gate. We found that
the screening is effective when the distance (w) between the graphene
layers and the gate is lesser than the typical Wannier orbital size (∼ 15
nm) of the system.

Experimentally, we have measured the thorough temperature de-
pendence of three devices D1, D2 and D3 with θ1 = 1.15◦, w1 = 7 nm,
θ2 = 1.04◦, w2 = 9.8 nm and θ3 = 1.10◦, w3 = 12.5 nm respectively.
By comparing the temperature dependent phase space of these three
devices we found that device D1 which had the thinnest hBN and a θ
slightly away from the magic angle demonstrated a phase space which
is very different than other devices. In this device, we did not observe
any correlated insulator at any integer filling of the flat band. However,
there were two broad superconducting domes at ν = ±2. In device D3,
which had a thickest hBN and the twist angle is exactly magic angle,
we observed all the correlated insulators at all the integer fillings and
also we observed superconductor upon slightly doping away from the
insulators. But device D2 showed an intermediate behavior in which
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we have observed superconductors at ν = ±2. Although it did not
show any insulating state at the valence band, it had a non-activated
resistance peak at ν = +2, suggesting an underdeveloped correlated
insulator.

Hence, in Chapter 7, we have demonstrated the screening effect on
the phase space of three devices with slightly different twist angles and
different hBN thicknesses. The observed resilience of superconductiv-
ity upon suppression of the insulating phase is consistent with the two
phases competing rather than being intimately connected. Such com-
petition would be hard to reconcile with a common microscopic mech-
anism of the two phases as suggested by an analogy with cuprates.
However, a detailed and controlled study of the screening, keeping the
twist angle same is required, in order to understand this mechanism
better.

The temperature dependence of the resistivity inside the flat band
gives us a lot of important information about the coupling mechanisms,
either electron-electron or electron-phonon coupling in the system. Be-
sides other correlated phenomena, we observed strange metallicity in
MATBG. In Chapter 8 we have discussed the detailed temperature
dependence of resistivity of twisted bilayer graphene devices over a
wide range of twist angles from θ = 0.75◦ to θ = 2◦. We have mainly
focused on a device with twist angle θ = 1.04◦ and a screening layer
placed closed than the Wannier orbital. Due to the screening effect, the
correlated states are suppressed and we observed prominent metallic
states upto a very low temperature. We observed that the devices with
twist angle close to magic angle had a T -linear resistivity upto a very
low temperature of T = 40 mK and as we moved towards the CNP
of BI, the resistivity had quadratic dependence of T . Our observation
also included a B-linear resistivity upon suppressing the superconduct-
ing state above Bc. However, for devices with twist angles away from
magic angle, we did not observe any T -linear resistivity, rather the re-
sistance showed a superlinear or quadratic dependence on both B and
T (ρ(T 2, B2)).

These findings make a clear case that MATBG possesses a Planckian-
limited T -linear resistivity that extends down to unprecedentedly low
temperatures of 40 mK and occurs alongside a quantum B-linear mag-
netoresistance. Such behaviour is incompatible with a Fermi-liquid
picture and conventional electron-phonon scattering. The Fermi-liquid
behaviour is observed throughout the entire moiré band at non-magic
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angles, by contrast, in MATBG it is pushed to the flat band edges.
We therefore concluded that a strange metal phase exists, arising from
a quantum-critical region spanning a range of dopings including but
not limited to those where the Fermi surface reconstructs and where
quantum fluctuations dominate the metallic ground state of MATBG.
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9.2 Future directions

In this thesis, we have only explored the moiré superlattices of graphene,
a 2D hexagonal lattice of carbon atoms and observed many rich cor-
related phenomena. Based on the recent developments of this moiré
system, there is now a new field of research, called twistronics, in
particular magic-angle twistronics, aiming at exploiting this novel
degree of freedom to its extremes. This field is expanding quickly and
absorbing many great scientists. It shall be expected that soon in the
future we will have a more detailed complete understanding of the
magic angle phenomenology.

Following the first result on the observation of superconductivity
in MATBG, there are plenty of other experiments, both studying the
superconductivity [36, 92, 138], as well as other interesting phenom-
ena resulting from the flatness and topology of the bands, including
a strange metal phase [37] and quantum anomalous Hall effect in the
hBN aligned devices [139, 140]. All of these discoveries make MATBG
a rich system with strong correlation and with nontrivial band topol-
ogy.

On the theory side, there have been hundreds of papers that in-
vestigate a variety of topics, from the origin of the magic angles, to
possible mechanisms of the superconductivity, and its number is still
quickly growing [141–145]. However, while experimental evidence gen-
erally points towards a strongly correlated superconductivity, the true
origin of this phase is still heavily debated by the theorists.

Surprisingly, despite its elusive origin, superconductivity in MATBG
is already finding itself potential applications, faster than many other
frontier materials in condensed matter physics. One of the main ap-
proach is to make Josephson junction out of these superconducting
states. There has been already few experiments performed in this
system [146–148] to explore the Josephson junction effect on the su-
perconductivity. However, multiple studies can be performed in order
to understand the microscopic mechanism of the superconductivity.

Another direction is to study the thermal properties of MATBG.
It is recently proposed [149] that the small heat capacity of MATBG
might make it suitable as a single-photon detector, in particular in
mid-infrared to terahertz frequencies. There are already initial results
on the thermal properties of the superconductor in MATBG [150].
However, there remains a lot of opportunities in this field to be explored
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in the future.
As the direct extension of the work done in this thesis, we have

several directions of research that can be performed in the future.

• One of the interesting topics concerns the Coulomb screening
of the correlation inside the flat band of MATBG. In all the
studies [36, 138], the screening layers have been varied in different
devices with slightly different twist angles. However, one of the
main parameters that dictates the correlation in this system is
the band width of the flat band. The band width is a strong
function of twist angle in MATBG. Hence, studying the screening
effect in multiple devices with slightly different twist angles is
not quantitatively conclusive. We can now fabricate a single
device with a single twist angle on a substrate which has a very
high dielectric constant. For this purpose, we will use SrTiO3

(STO) substrate which has much higher dielectric constant than
hBN [151–153]. We will fabricate our MATBG devices on top of
this substrate. One part of the device will not be covered with
hBN and be directly gated through the dielectrics of STO and
another part will be covered with hBN and will be gated through
the graphite gate. Due to the different dielectric environment in
STO and hBN, we expect to see a variation in correlation of
the charge carriers in these two parts. Hence, the overall phase
space of a single twisted bilayer graphene device is expected to
be different depending on the dielectric environments.

• In this thesis, we have explored the high magnetic field behaviour
of MATBG devices and observed the re-entrance of the flat band
at a magnetic field corresponds to one magnetic flux quantum
per moiré unit cell. This result is evidenced by the observa-
tion of a set of correlated insulators at different integer fillings
of the flat band. However, an immediate question arises about
the existence of superconductivity in this flat band similar to the
scenario as zero-field. We will fabricate MATBG devices with
high homogeneity, so that the relative change in twist angle does
not alter the magnetic field required to reach one magnetic flux
quantum per moiré unit cell. This is important as the critical
magnetic filed of the superconductor in MATBG is quite small
(Hc ∼ 50 − 70 mT) in general. We will perform magnetore-
sistance measurements on these highly homogeneous MATBG
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devices upto B = 36 T.
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98. Xie, Y., Lian, B., Jäck, B., Liu, X., Chiu, C.-L., Watanabe, K.,
Taniguchi, T., Bernevig, B. A. & Yazdani, A. Spectroscopic sig-
natures of many-body correlations in magic-angle twisted bilayer
graphene. Nature 572, 101–105 (2019).

99. Choi, Y., Kemmer, J., Peng, Y., Thomson, A., Arora, H., Polski,
R., Zhang, Y., Ren, H., Alicea, J., Refael, G., et al. Electronic
correlations in twisted bilayer graphene near the magic angle.
Nature Physics 15, 1174–1180 (2019).

100. Gupta, S. & Yakobson, B. I. What Dictates Rashba Splitting
in 2D van der Waals Heterobilayers. Journal of the American
Chemical Society 143, 3503–3508 (2021).

101. Yin, J., Maity, P., Xu, L., El-Zohry, A. M., Li, H., Bakr, O. M.,
Brédas, J.-L. & Mohammed, O. F. Layer-dependent Rashba
band splitting in 2D hybrid perovskites. Chemistry of Materials
30, 8538–8545 (2018).

102. Liu, X., Chanana, A., Huynh, U., Xue, F., Haney, P., Blair,
S., Jiang, X. & Vardeny, Z. Circular photogalvanic spectroscopy
of Rashba splitting in 2D hybrid organic–inorganic perovskite
multiple quantum wells. Nature communications 11, 1–8 (2020).

103. Feng, Y., Jiang, Q., Feng, B., Yang, M., Xu, T., Liu, W., Yang,
X., Arita, M., Schwier, E. F., Shimada, K., et al. Rashba-like spin
splitting along three momentum directions in trigonal layered
PtBi2. Nature communications 10, 1–8 (2019).

104. Datta, B., Dey, S., Samanta, A., Agarwal, H., Borah, A., Watan-
abe, K., Taniguchi, T., Sensarma, R. & Deshmukh, M. M. Strong
electronic interaction and multiple quantum Hall ferromagnetic
phases in trilayer graphene. Nature communications 8, 1–7 (2017).

183



105. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero,
P. Quantum Hall effect and Landau-level crossing of Dirac fermions
in trilayer graphene. Nature Physics 7, 621–625 (2011).

106. Uri, A., Grover, S., Cao, Y., Crosse, J. A., Bagani, K., Rodan-
Legrain, D., Myasoedov, Y., Watanabe, K., Taniguchi, T., Moon,
P., et al. Mapping the twist-angle disorder and Landau levels in
magic-angle graphene. Nature 581, 47–52 (2020).

107. Herzog-Arbeitman, J., Chew, A., Efetov, D. K. & Bernevig,
B. A. Reentrant Correlated Insulators in Twisted Bilayer Graphene
at 25 T (2π Flux). Phys. Rev. Lett. 129, 076401 (7 2022).

108. Jain, J. K. Composite Fermions (Cambridge University Press,
2007).

109. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator:
Physics of high-temperature superconductivity. Rev. Mod. Phys.
78, 17–85 (1 2006).

110. Nilsson, F., Karlsson, K. & Aryasetiawan, F. Dynamically screened
Coulomb interaction in the parent compounds of hole-doped
cuprates: Trends and exceptions. Phys. Rev. B 99, 075135 (7
2019).

111. Yankowitz, M., Chen, S., Polshyn, H., Zhang, Y., Watanabe, K.,
Taniguchi, T., Graf, D., Young, A. F. & Dean, C. R. Tuning su-
perconductivity in twisted bilayer graphene. Science 363, 1059–
1064 (2019).

112. Goodwin, Z. A. H., Corsetti, F., Mostofi, A. A. & Lischner, J.
Twist-angle sensitivity of electron correlations in moiré graphene
bilayers. Phys. Rev. B 100, 121106 (12 2019).

113. Pizarro, J. M., Rösner, M., Thomale, R., Valentı, R. & Wehling,
T. O. Internal screening and dielectric engineering in magic-
angle twisted bilayer graphene. Phys. Rev. B 100, 161102 (16
2019).

114. Koshino, M., Yuan, N. F. Q., Koretsune, T., Ochi, M., Kuroki,
K. & Fu, L. Maximally Localized Wannier Orbitals and the Ex-
tended Hubbard Model for Twisted Bilayer Graphene. Phys.
Rev. X 8, 031087 (3 2018).

184



115. Polshyn, H., Yankowitz, M., Chen, S., Zhang, Y., Watanabe,
K., Taniguchi, T., Dean, C. R. & Young, A. F. Large linear-
in-temperature resistivity in twisted bilayer graphene. Nature
Physics 15, 1011–1016 (2019).

116. Cao, Y., Chowdhury, D., Rodan-Legrain, D., Rubies-Bigorda,
O., Watanabe, K., Taniguchi, T., Senthil, T. & Jarillo-Herrero,
P. Strange Metal in Magic-Angle Graphene with near Planckian
Dissipation. Phys. Rev. Lett. 124, 076801 (7 2020).

117. Hussey, N. E., Mackenzie, A. P., Cooper, J. R., Maeno, Y.,
Nishizaki, S. & Fujita, T. Normal-state magnetoresistance of
Sr2RuO4. Phys. Rev. B 57, 5505–5511 (9 1998).

118. Klein, L., Dodge, J. S., Ahn, C. H., Snyder, G. J., Geballe, T. H.,
Beasley, M. R. & Kapitulnik, A. Anomalous Spin Scattering
Effects in the Badly Metallic Itinerant Ferromagnet SrRuO3.
Phys. Rev. Lett. 77, 2774–2777 (13 1996).

119. Li, S. Y., Taillefer, L., Hawthorn, D. G., Tanatar, M. A., Paglione,
J., Sutherland, M., Hill, R. W., Wang, C. H. & Chen, X. H. Gi-
ant Electron-Electron Scattering in the Fermi-Liquid State of
Na0.7CoO2. Phys. Rev. Lett. 93, 056401 (5 2004).

120. Wang, Y., Rogado, N. S., Cava, R. J. & Ong, N. P. Spin entropy
as the likely source of enhanced thermopower in NaxCo2O4. Na-
ture 423, 425–428 (2003).

121. Philip Phillips, P. P. Advanced solid state physics illustrated edi-
tion (Westview Press, 2002).

122. Franz, R. & Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit
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131. Löhneysen, H. v., Pietrus, T., Portisch, G., Schlager, H. G.,
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